
Program Reference

Manual

The TNT Re�nement Package

Dale E. Tronrud

This manual is consistent with Release 5-F of TNT. Detailed in-
formation about the package and methods used can be found in the
following references. These papers can also be viewed at

http://www.uoxray.uoregon.edu/dale/

� Tronrud, D. E., Ten Eyck, L. F., & Matthews, B. W. (1987). An
E�cient General-Purpose Least-Squares Re�nement Program for
Macromolecular Structures. Acta Crystallogr A, 43, 489{501.

� Tronrud, D. E. (1992). Conjugate-Direction Minimization { An
Improved Method for the Re�nement of Macromolecules. Acta

Crystallogr A, 48 (November), 912{916.

� Tronrud, D. E. (1996). Knowledge-Based B-Factor Restraints for
the Re�nement of Proteins. J App Cryst, 29 (2), 100{104.

� Tronrud, D. E. (1997). The TNT Re�nement Package. in Macro-
molecular Crystallography, Part B, Eds Charlie Carter, and Robert
Sweet, Volume 277 in Methods in Enzymology, pp 306-319.

� Tronrud, D. E. (1999). The E�cient Calculation of the Normal
matrix in lease-squares re�nement of macromolecular Structures.
Acta Crystallogr A, 55, 700{703.

Up-to-date information about TNT can be found at

http://www.uoxray.uoregon.edu/tnt/

c 2000 by the Oregon State Board of Higher Education, All rights
reserved.

http://www.uoxray.uoregon.edu/dale/
http://www.uoxray.uoregon.edu/tnt/

Contents

Acknowledgements . v

Conventions . vi

1 TNT Re�nement Package 1

The Programs of TNT . 2

Geometry . 2

Rfactor . 3

NCS . 3

Shift . 4

Convert . 4

Fourier . 4

How do I . . . ? . 5

2 Theory of TNT Re�nement 7

What Direction to Shift? . 7

How Far to Shift? . 10

Least Squares Re�nement 11

The Re�nement Script . 12

Re�nement Script Details 13

Adding your Own Module . 14

3 Shared I/O Properties 19

Properties of a Statement . 19

File Properties . 20

Standard TNT Data Statements 21

Standard TNT Command Statements 30

i

ii CONTENTS

4 The Stereochemical Module 35

GEOMETRY (Stereochemical Program) 36

Required Input . 36

Options . 37

Unique Input Statements 38

Command Statements 41

5 The Noncrystallographic Symmetry Module 45

NCS (Noncrystallographic Symmetry Program) 47

Unique Input Statements 47

Command Statements 49

Program Operation . 54

6 The X-ray Crystallographic Module 57

RFACTOR (Structure Factor Comparison Program) 58

The Scaling Function . 58

Options . 60

Unique Input Statements 61

Command Statements 64

Program Operation . 70

7 Other Modules for TNT 73

Experimental Phase Re�nement Module 74

Problems . 75

Example Script . 75

Real Space Re�nement Module 76

Problems . 77

Example Script . 77

Rotation Function Re�nement Module 78

Command File Example 81

8 Creating Your Own Module 87

Passing Information to TNT 87

Using TNT to Calculate Derivatives 90

CONTENTS iii

9 Re�nement Control Program (Shift) 91
Options . 93

Unique Input Statements . 94
Parameter Editing Statements 95
Program Operation . 96

10 Re�nement Package Utilities 99
CONVERT (Coordinate Conversion Program) 100

Conversion Limitations 101
Keywords for Inferring the Sequence 103
Unique Keywords for Specifying Data 106
Command Statements 109
Program Operation . 110

DSCREEN (Derivative File Screening Program) 113
Command Statements 114

FOURIER (Di�raction Data Conversion Program) 115
Options . 116
Unique Input Statements 116
Command Statements 117

GATHER MAP (NCS Map Averaging Program) 126
Options . 127
Unique Input Statements 127
Command Statements 128
Program Operation . 128

OVERLAY (A Molecular Superposition Program) 131
Unique Input Statements 132
Command Statements 133
Program Operation . 135

SOLVENT (Solvent Region Flattening Program) 138
Options . 139
Unique Input Statements 139
Command Statements 140
Program Operation . 140

A File Formats 143
ATOMx Format Coordinate Files 143
DSN2 (Frodo) Format Coordinate Files 144

iv CONTENTS

HKL Format Structure Factor Files 144
PACKED Format Structure Factor Files 145
Ten Eyck MAP Format Files 146
Alwyn Jones' DSN6 Map Format Files 147

B Generating REFI Geometry Files from TNT Files 149
The Basic Problem . 150
Planes and Chiral Centers . 151
Most of This Belongs Somewhere Else... 152
The Messages . 153

C Reciprocal Space Asymmetric Units 157

D Real Space Asymmetric Units 161

v

Acknowledgements

The general design of this package was initiated by Lynn Ten Eyck. He
set up the user interface to the programs and established their internal
data structures while here at Brian Matthews' lab. While Lynn com-
pleted much of the coding for the initial version of the program, he left
the lab before the completion of the project. Mike Schmid picked up
the project and got the programs running well enough that he could do
some re�nement but the programs did not behave properly and it was
clear that much debugging and development was still required. In the
process of this debugging and development a number of new features
were incorporated into the package to enhance its exibility, speed,
generality, user-friendliness, and general usefulness as an all-purpose
program for macromolecular structure re�nement.

Since I picked up the project in 1981 I was aided in my work by many
discussions with everyone in the Matthews lab. The most important
and frequent of these discussions were with Meg Holmes, Larry Weaver,
Jim Remington, and of course, Brian himself. Meg wrote the �rst draft
of this manual, and most everyone in the lab has proofread it at one
time or another.

The suggestion that the gradient/curvature method be incorporated
into TNT was �rst made by Ron Stenkamp.

vi

Conventions

There are a number of conventions used in this document. One set of
conventions use the typeface to indicate what kind of object is being
described. These conventions are

Bold This is the name of a script, e.g. tnt.

Teletype This is a �le name, e.g. tnt/data/formfactor.dat. This
typeface is also used to display exact dialogs between the
user and the computer. In such an example the text typed
by the user is in bold.

First letter
capitalized

This is the name of a program, e.g. Rfactor.

Another series of conventions are involved in the speci�cation of
syntax. When describing a data statement or command there has to
be a method to specify that something is optional or something else
can be repeated. These conventions are

< . . .> Substitute a value. The text within the broken brackets
describes the value. In the input line the broken brackets
are not entered.

N(. . .) Repeat the contents of the parenthesizes zero or more
times.

[: : :] The contents of the brackets are optional.

f . . . j . . . g Choose one of the options separated by \j". There may
be more than two options to choose from.

Chapter 1

TNT Re�nement Package

Congratulations! You have decided to leave the world of canned shell
scripts and enter the real world of TNT operation.

TNT is actually a collection of utility programs which can be or-
dered and combined in many di�erent ways. The scripts you have been
using are one way of putting the pieces together but there are many
uses and functions in TNT which are not accessible from the limited
world of rigid scripts.

The design of TNT di�ers from that of other re�nement packages.
It is broken into a number of isolated programs, each of which performs
a speci�c and limited set of functions. All of the programs are similar
in that they enjoy the same style of input and share a great deal of
internal code. They only di�er in the particular command statements
each will accept.

Originally this design was chosen to save memory and improve the
ability to handle special cases. It did not make sense to allocate memory
for holding structure factors when evaluating stereochemical functions
or to allocate memory to store the standard geometry library when
calculating structure factors. Since Fortran 77 does not allow dynamic
allocation of memory the only way to control this is to write separate
programs.

In addition this architecture was chosen because there was no means
to handle the numerous space groups e�ciently without using a di�er-

1

2 TNT REFINEMENT PACKAGE

ent program for each one. In the far past one calculated structure
factors by �rst running a space group general program to calculate
electron density maps from coordinates, then running a space group
speci�c program which read the map �le and calculated structure fac-
tors, and �nally running the original form of the program Rfactor which
read these calculated structure factors. In the current form of TNT all
these activities are incorporated in the libraries which underlie all the
crystallographic programs.

One bene�t of TNT's design which is still quite relevant is that one
can access the data which ows from one program to another. If you
are developing your own ideas for re�nement you can work them into
TNT without learning its internal structure and you can optimize your
calculations by structuring your data in whatever way you want.

Clearly the direction of TNT is to be merged into larger programs
until the entire package is uni�ed. The challenge of design is to �nd a
way to bring these programs together while maintaining your ability to
include your own ideas. That is my job.

The Programs of TNT

The principle programs of TNT are:

Geometry

Geometry is the TNT program which performs all tasks related to stan-
dard stereochemistry. Its basic function in re�nement is to read a co-
ordinate �le, along with its corresponding sequence �le and standard
geometry library, to calculate the function value, gradient, and cur-
vature of the stereochemical residual function. Its other great task is
to produce the list of worst violations of each kind of stereochemistry.
Both of these tasks are accessed via the shell scripts tnt and geometry.

Geometry also has a very useful tool for the evaluation of the quality
of a standard library. One can read a coordinate �le and a library and,
instead of looking for outliers, look at the standard values the library

THE PROGRAMS OF TNT 3

would have to have to match the coordinates. If one has a number of
high resolution models they can all be read into Geometry and its list
can be checked for systematic di�erences between the coordinates and
the library. This list is generated with the $tntbin/report geo script.

Rfactor

Rfactor is used in any case where two sets of structure factors are
compared and scaling is required. This is in contrast to Fourier which
is used whenever a single set of structure factors are used or two sets
are used without scaling. If you want to calculate di�erence maps of
various sorts this is the place to go.

In addition, Rfactor performs very complicated calculations in its
computation of the function value, �rst, and second derivatives of the
crystallographic restraining function. Rfactor has several commands
which allow you to directly access portions of these calculations and
subvert them to your will. The AGARWAL command allows you to
supply special Fourier coe�cients to calculate a gradient. The NOR-
MAL MATRIX command allows you to, likewise, perform special pur-
pose calculations of the diagonal of the Normal matrix. No shell scripts
are supplied to access these commands.

NCS

The program NCS handles the constraint or restraint of noncrystallo-
graphic symmetry. It is well encapsulated by the shell scripts supplied
with the TNT distribution ($tntbin/tnt cycle ncs, ncs, gather,
and scatter). To constrain a model to noncrystallographic symmetry
you need to modify a re�nement script to meet your needs. A prototyp-
ical script is supplied in tnt/doc/tnt cycle con ncs and the required
changes are described in the \De�ning Noncrystallographic Symmetry"
chapter of the TNT Users' Guide.

4 TNT REFINEMENT PACKAGE

Shift

The program Shift contains all the code which implements the function
minimizer of TNT. Shift does not know anything about di�raction,
stereochemistry, or noncrystallographic symmetry. It is quite exible
about what function it is minimizing. The form and de�nition of the pa-
rameters to be varied are built into Shift and these cannot be changed.
TNT will allow you to change the data your model is restrained to but
will not allow you to change the nature of the parameters themselves.
(Someday this may change.)

Convert

Convert reads and writes many coordinate �le formats. Only con-
versions for the Protein Data Bank (PDB) format and Alwyn Jones'
DSN2 format can be performed using shell scripts (to pdb, from pdb,
to dsn2, and from dsn2). You can write your own scripts to access
the other formats.

Fourier

Fourier is basically a �le format converter for crystallographic data �les.
This view is based on the point of view that Fourier coe�cients and
density maps are merely di�erent formats of the same information. A
Fourier transform is required to convert the data from one represen-
tation to the other but the information is conserved in the process.
Since all TNT programs which read crystallographic data can perform
Fourier transforms themselves and will accept either a set of Fourier
coe�cients or a map interchangeably this use of Fourier is not usually
needed.

The other task of Fourier is to perform various operations on crys-
tallographic data sets. It is the program used by the correct and
report hkl scripts. A set of functions of Fourier not accessible from
the shell scripts is its ability to add, subtract, multiply, or divide any
pair of crystallographic data sets. For example, you can ask for a map

HOW DO I . . . ? 5

which is determined from the sum of two sets of Fourier coe�cients. In
fact you can add a map and a set of coe�cients and the program will
Fourier transform one of them and then add them.

How do I . . . ?

� calculate a di�erence map?

A di�erence map is usually some function of both Fo and Fc.
Since scaling of the two structure factor sets is required you need
to use the program Rfactor. If all you want is a 2Fo-Fc or Fo-Fc
map you can use the make maps shell command. If you want
some other map you should take the script $tntbin/make maps

and edit a copy to change the type of the Fourier coe�cients to
those you want.

� calculate a Fourier transform?

Fourier transforms are calculated with the program Fourier. If
you want to calculate a map from coe�cients simply PUNCH a
map using the coe�cient �le as the \source". If you want the
other direction PUNCH the coe�cient �le with a map �le as its
source. Usually Fourier transforms do not need to be explicitly
calculated in TNT. Any operation that requires crystallographic
data will accept either a map or a set of coe�cients as input. As
coe�cient �les are smaller you should try to store data in that
form whenever possible.

� change a map �le format?

The only map �le formats supported in TNT are the traditional
Ten Eyck map format and Alwyn Jones' DSN6 map format. TNT
will not read a DSN6 format �le. This means that the only con-
version possible is to convert a Ten Eyck map �le to DSN6. This
is done with the program Fourier. Simply PUNCH the DSN6
format map using the Ten Eyck map as the \source". Such con-
versions are usually unnecessary because any TNT program that
can write a Ten Eyck map �le can write a DSN6 �le directly.

6 TNT REFINEMENT PACKAGE

� change a coordinate �le format?

To read or write PDB or DSN2 format coordinate �les use the
from pdb, from dsn2, to pdb, or to dsn2 shell commands.
You can also convert a PDB �le directly to DSN2 using the
$tntbin/pdb2dsn2 script. For other �le formats you need to
write a script for the program Convert. You can use one of those
scripts supplied in TNT as a template. Remember, one usually
cannot convert �le formats without some manual editing.

Chapter 2

Theory of TNT Re�nement

The TNT package uses gradient descent methods to optimize the pa-
rameters of the molecular model. For methods of this type the structure
of a cycle of re�nement is the same regardless of the particular method
used (Agarwal, R.C., Acta Cryst. (1978).A34, 791-809). Think of each
parameter of the model as a component of a very long vector. First
a new vector is chosen to add to the original vector, this is the shift
vector. Only a fraction of this vector, however, is to be added. The
second part of each cycle is to determine how much.

If the model vector is called x and the shift vector s, the new model
vector x0 is

x0 = x+ �s

where � is the fraction of the shift to be applied. The two steps of
a cycle of re�nement are �rst to calculate s and then to determine �.
The di�erent minimization methods available in TNT alter how s is
calculated. The calculation of � is always done the same way.

What Direction to Shift?

How does one calculate s? TNT o�ers several options. The simplest
method is derived by recognizing that the least we need is for s to
point downhill. Since the gradient of a function points in the steepest

7

8 THEORY OF TNT REFINEMENT

uphill direction, by de�nition, the negative of the gradient will point
in the steepest downhill direction. Equating s with the negative of
the gradient of the function (�rf(x)) gives us the steepest descent
method.

The steepest descent method is very good as long as the curva-
ture for each parameter is the equal, but this is far from true in crys-
tallographic re�nement. Because of the di�erence in curvatures the
minimum curves away from the direction of the gradient, and many,
many successive cycles of re�nement are required to reach the mini-
mum. Some account must be made for the curvature.

The conjugate gradient method (Fletcher, Reeves, Computer Jour-
nal (1964). 7, 149) uses the di�erence between the gradient in the last
cycle and the current gradient to infer the curvature and derive a supe-
rior direction to shift. In e�ect, it learns the curvature of the function
as more and more cycles are run and compensates for it. The conjugate
gradient method requires the current gradient and the direction of shift
from the last cycle. This means that it cannot be used in the �rst cycle
of a series because in the �rst cycle there is no old direction of shift.
Also you cannot change anything about the model between the two
cycles. The weights, modules used, and scale factors must remain the
same. If you need to change the weights, or something else, you must
restart with a steepest descent cycle.

To summarize, with conjugate gradient minimization

sk = �rf(xk) + �ksk�1 (2.1)

�k =
rf(xk)trf(xk)

rf(xk�1)trf(xk�1)
(2.2)

Because the conjugate gradient method deduces the curvature from
previous cycles it sometimes takes quite a few before it can overcome the
problems introduced by large di�erences in curvature. For positional
parameters, x, y, and z, the curvatures are close to the same magnitude
for all atoms except when a particular atom has many more electrons
than the rest. A heavy atom will tend to be overshifted each cycle which
results in an oscillation. In steepest descent the oscillation problem
is very bad and persists after many cycles. With conjugate gradient

WHAT DIRECTION TO SHIFT? 9

the oscillations will damp out with time but you must monitor the
individual shifts of the heavy atoms to determine when convergence
has occurred.

The B factors of heavy atoms also oscillate during re�nement, how-
ever a more serious problem occurs with atoms with large B factors.
The curvature for the B factor of these atoms is smaller than the av-
erage which causes the parameters to be undershifted. The B factors
actually lock up with values smaller than optimal if they started too
small and with values too large if they started too large. Since B factors
usually start small the large B factors of a model re�ned with steepest
descent or conjugate gradient are systematically underestimated.

The solution to these problems is to include explicitly the curvature
of each parameter. The method which uses curvature that is equivalent
to steepest descent is the gradient/curvature method. In this method
the direction of shift, s, is de�ned to be the negative of the ratio of the
gradient and the diagonal of the curvature matrix. In other words (so
to speak)

s = � rf(x)
r2

df(x)
(2.3)

Given the same gradient, parameters with large curvatures are shifted
smaller amounts while those with smaller curvatures are shifted more.
The calculation of the shift vector with this method requires the gra-
dient of the function and the diagonal of the curvature.

Besides improving the rate of convergence the explicit incorpora-
tion of the curvature allows the positional and thermal parameters to
be re�ned at the same time. With steepest descent and conjugate gra-
dient the large di�erence in curvature between the di�erent types of
parameters results in the requirement that they each be re�ned sepa-
rately. First the XYZ parameters must be re�ned with the B factors
held constant and then the B's are re�ned with the positions held. The
process must be alternated several times to allow each class of param-
eter to adjust to the changes in the other. With gradient/curvature all
parameters may be varied in each cycle.

While the incorporation of the diagonal part of the curvature im-
proves convergence a great deal the o�-diagonal part is still not used.

10 THEORY OF TNT REFINEMENT

The explicit use of these elements of the normal matrix would consume
a great deal of computer time and require extensive modi�cations to
the structure of TNT. If a method equivalent to conjugate gradient
existed which used the gradient/curvature method as its base instead
of steepest descent the o�-diagonal elements would be \learned" from
the history of the re�nement. Such a method has been devised (Ax-
elsson, O., Barker, V.A., Finite Element Solution of Boundary Value

Problems (1984) Chapter 1, Academic Press, Inc), (Tronrud, D. E.,
Acta Cryst. (1992) A48, 912-916) and called preconditioned conjugate
gradient. To calculate the shift vector requires the gradient and curva-
ture of the function as well as the shift vector from the last cycle. Like
conjugate gradient nothing may be changed between successive cycles
of preconditioned conjugate gradient re�nement. If the weights are to
be changed re�nement must begin again with gradient/curvature.

The equations for the shift in TNT's version of preconditioned con-
jugate gradient are

sk = � rf(xk)
r2

df(xk)
+ �ksk�1 (2.4)

�k =
rf(xk)tr2

df(xk)rf(xk)
rf(xk�1)tr2

df(xk)rf(xk�1)
(2.5)

How Far to Shift?

Once the shift vector has been calculated the fraction of this vector, or
� must be determined. We want to �nd a value for � which will cause
f(x+�s) to be as small as possible. Since we know x and now know s
the problem is a one dimensional minimization problem. The strategy
used in TNT to �nd � is

1. Guess a value for �.

2. Calculate f(x+ �s).

3. Fit a parabola to the known data.

HOW FAR TO SHIFT? 11

4. Set � to the minimum of the parabola.

5. Goto 2

The process repeats until the change in � from one cycle to the next is
insigni�cant.

The particular de�nition of insigni�cant used is \When the pre-
dicted improvement in function value is less than �ve percent". The
function value at the point x+�s was smaller than it was at the start.
The function value should be even lower with the new value of �. From
the parabola we can predict how much lower the function value will be
at the new point. This di�erence is the predicted improvement in func-
tion value. If the predicted improvement is small there is little reason
to deliberate the merits of the di�erent values for �. It is time to start
an entirely new cycle.

The one dimensional minimization loops require the calculation of
the value of the function but no gradients or curvatures. They take a
small proportion of the computer time of the entire cycle of re�nement.
Therefore they are called \short loops". In a �t of bad analogy, the
name \long loop" has been given to the portion of a cycle which cal-
culates the shift vector. A cycle of re�nement consists of a single long
loop and two short loops. If the approximations of the calculations are
violated in some fashion more short loops will be required. If additional
short loops are executed there may be nothing wrong with the cycle
but it should be examined for error.

Least Squares Re�nement

The function minimized in least-squares optimization is

f(x) =
X
i

1

�2o(i)
(Qo(i)�Qc(i;x))

2

Where Qo(i) is the i(th) observation, known with the standard devi-
ation �o(i), and Qc(i;x) is the corresponding prediction of the model
given a set of parameters, x. If the model is being restrained by several

12 THEORY OF TNT REFINEMENT

types of observations it is more convenient to use a separate term for
each type. Then the function becomes

f(x) = f1(x) + f2(x) + f3(x) + � � � :
Where f1 is the sum over the �rst class of observations and so forth.

In the long loop we want to calculate f(x) as well as its gradient
and usually its curvature. The �rst and second derivative operators
are both linear, which means that the �rst derivative of a sum is the
sum of the �rst derivative of each term. We can calculate the gradient
and curvature for each type of observation separately and add them
together later.

Using this property TNT has been broken into separate programs.
There is a di�erent program for each term of the function which cal-
culates the function value, gradient, and curvature for their term. The
central control program, Shift, combines the information for each term
and performs the tasks which coordinate the cycle of re�nement. The
separation of the calculations into programs by observation type allows
new data types to be used as restraints, or existing ones to be ignored,
without modifying the programs which handle the minimization itself.
To add a new type of observation you simply write a program which
can calculate the value of that term and its gradient. If possible it
should also calculate the curvature so that the more powerful methods
of function minimization can be used.

The Re�nement Script

TNT is supplied with scripts for performing the most common types of
re�nement. These scripts are listed in Table 2.1. The simplest means
to develop a new script is to modify one of these �les. To understand
the data ow within a TNT re�nement job you must understand the
�le naming convention and the way the di�erent terms in the equation
are implemented in the programs of TNT.

The input to a cycle of re�nement is the starting model, named by
convention init.cor, and the optional old shift vector named olddir-

.dat. Because the results of each cycle is usually fed into the next the

THE REFINEMENT SCRIPT 13

tnt cycle regularize stereochemistry alone

tnt cycle di�raction data and stereochemistry (default)

tnt cycle ncs ncs symmetry as well

tnt cycle realspace real space re�nement w/ geometry

tnt cycle phase amplitude, phase, and geometry

Table 2.1: Scripts Supplied with TNT.

output of a cycle of re�nement is the same type of data | a coordinate
�le and a shift vector. However the new �les have di�erent names:
shifted.cor and newdir.dat. The code provided by these scripts
renames shifted.cor to init.cor and newdir.dat to olddir.dat at
the end of each cycle.

Re�nement Script Details

The �rst half of the script is the long loop. The program for each term
is run to calculate the function value and gradient using the parameters
in init.cor. If you want to run steepest descent or conjugate gradient
this is all the information you need, and you would use the GRADIENT
command. If you wish to use gradient/curvature or preconditioned
conjugate gradient, which are the preferred methods, you would use
the CURVATURE command instead.

Therefore each program is provided with the observations to which
the model is to be restrained, the coordinate �le (init.cor), and �nally
given the CURVATURE command. (I suggest you read $tntbin/tnt -

cycle at this point.)

The control program, Shift, is given the �les produced by each mod-
ule as well as init.cor and olddir.dat. The ow of data in a long
loop is shown diagrammatically in Figure 2.1.

14 THEORY OF TNT REFINEMENT

If you do not have an old shift vector or do not want to use one of
the conjugate gradient methods you should still INCLUDE olddir.dat

and simply supply an empty one. Having Shift read an olddir.dat

regardless of whether one is there allows you to switch between conju-
gate and non-conjugate methods without editing the script. Switching
between a gradient and a curvature method simply requires that the
GRADIENT command be replaced with a CURVATURE command.

In the long loop Shift should be instructed how to vary the param-
eters. The de�nition of which parameters are to be held constant, such
as occupancies, and which parameters are to be treated as collected
groups, as in rigid body re�nement or when portions of the model are
to have single overall B factors, must be given to Shift. Since these
de�nitions are usually given in the control �le Shift should read this
�le as well.

In the short loop each module is ran once again (Figure 2.2). This
time they are given the coordinate �le shifted.cor and execute the
FUNCTION command. Their output �les are all read by Shift. The
ow of control in the short loop can be seen in the standard script
$tntbin/tnt cycle.

Adding your Own Module

1. Choose a script as the starting point.

2. Run the new program in the long loop.

(a) Have it read init.cor

(b) De�ne the command to be either GRADIENT or CURVA-
TURE with the $COMMAND environment variable.

3. Have Shift read the output of the new module

(a) Remember to delete the �le after Shift's run

4. Add the new program to the short loop.

(a) Use shifted.cor this time.

ADDING YOUR OWN MODULE 15

olddir.dat init.cor

| | | | |_______________________________________

| | | |_____________________ |

(optional) | |______ | |

| | | | |

| | ------------ ------------------ ----------------

| | | X-Ray | | Stereochemical | | User Defined |

| | | Module | | Module | | Modules |

|______ | ------------ ------------------ ----------------

| | | | |

| | rfactor.dat geometry.dat ???????

| | | | |

| | ____| | |

| | | __________________| |

| | | | ____________________________________

| | | | |

| | | | | <------ Gradient, function value

------------------- (, and optionally curvature)

| Control Program | from each module.

| | |

stpfil.dat | | | newdir.dat

| | |

|

| shifted.cor

To Short Loop

Figure 2.1: Long Loop Data Flow

This �gure shows the ow of data through a long loop and the standard

�le names. Each module contributes one set of derivatives and a function

value for its term in the function being minimized. It may also supply the

curvature.

The control program (Shift) produces three �les. newdir.dat is the direction

�le. This �le contains the shift vector calculated by combining the informa-

tion from each module. stpfil.dat is used to communicate with the next

run of Shift in the short loop. It passes information about the history of the

search for the minimum along the shift vector. shifted.cor is a coordinate

�le where the �rst guess as to what the best shift should be has been applied.

16 THEORY OF TNT REFINEMENT

init.cor newdir.dat stpfil.dat shifted.cor

| | | | | |

|_______ | __________| | | |

| | | ________________| | |_____________

| | | | ___| |

| | | | | |

| | | ---------- ------------------ ----------------

| | | | X-Ray | | Stereochemical | | User Defined |

| | | | Module | | Module | | Modules |

| | | ---------- ------------------ ----------------

| | | | | |

| | | rfactor.dat geometry.dat ?????????

| | | | | |

| | | _____ | |

| | | | _________________ |

| | | | | _________________________________|

| | | | | |

| | | | | | <----- Function values

------------------- from each module

| Control Program |

| |

| |

stpfil.dat | | shifted.cor

| |

To Next Short Loop

Figure 2.2: Short Loop Data Flow

In a short loop the \goodness" of the present model is determined for each

term in the function by the appropriate module. Each module produces a �le

containing the function value for its term This information is combined with

information from the last short loop (stpfil.dat) and the starting point

(newdir.dat) and a value for � is calculated by the control program. The

product, �s, is added to the starting coordinate set (init.cor) and is written

out in a new shifted.cor. Also, information about this short loop (current

total function value and �) is written out in a new stpfil.dat.

ADDING YOUR OWN MODULE 17

(b) Write only the function value.

5. Have Shift read the output �le

(a) Delete the �le.

18 THEORY OF TNT REFINEMENT

Chapter 3

Shared I/O Properties

All of the programs in TNT read their input in the same fashion. They
were designed so that the order in which the data are read is unim-
portant. In addition the data statements, themselves, are free format.
You never need worry about the number of spaces required between
two words.

Properties of a Statement

Each statement is either empty or contains several tokens. A statement
can consist of several lines of text. If you wish a statement to be
continued on the next line simply end the line with a \\" character (or
a dash (\|") with a blank space preceding it). The statement can only
be broken between tokens, never in the middle of a word or number.
The number of characters on a statement cannot total more than 1024.
This limit is usually not a problem, but like any limit in TNT can be
increased if need be.

If the \#" character is encountered (or \!" for VMS people) the
rest of the line is presumed to be a comment. If the last letter prior
to the beginning of the comment was a dash then the statement will
be continued on the next line. One may have a statement spread over
many lines, with a comment at the end of each.

19

20 SHARED I/O PROPERTIES

A token is a collection of any characters other than spaces, tabs,
commas, or control characters. Tokens can be empty, such as a comma
with a blank before it or at the end of statement. An empty token
usually denotes that a default value is to be used for that piece of
information.

Tokens can contain either character or numeric data. Numbers may
be entered in any format (including \E" format). Decimal points are
not required when the value of the number is integral. When the token
contains character data all letters will be capitalized before the data
is interpreted (except for �le names). This means that \ca" will be
treated the same as \CA".

While all the characters of a token containing a number are impor-
tant, only the beginning of a text token is saved. For some tokens only
the �rst four letters are saved, others the �rst eight. With �le names
the �rst 128 letters are saved. Whether a particular token is signi�cant
to four or eight letters depends on the data type of the information
which is being speci�ed.

All statements begin with a keyword which speci�es the type of the
statement. The �rst 8 letters of a keyword are signi�cant. There are
two classes of keywords: data keywords and command keywords. Data
keywords begin statements that contain information while command
keywords specify actions that the program should take before any more
statements are read. Many data keywords are common to all programs.

File Properties

Initially input is read from the terminal (Fortran logical unit #5). In
general, data will be entered by either typing it into the script for the
batch job or placing it in a text �le and using the INCLUDE command
to bring it to the attention of the program.

You are allowed to arrange your data in any fashion you wish. You
can enter it all directly in the script or can separate di�erent types
of data in di�erent �les. Some kinds of data are consistently stored
in separate �les | All the coordinates are stored together in a �le

STANDARD TNT DATA STATEMENTS 21

and called \the coordinate �le". However even this is not required.
Sometimes it is useful to separate the coordinates into several �les and
bring them together at the last minute. Whatever the structure of the
data TNT will interpret it the same way.

Standard TNT Data Statements

Many of the data keywords are the same for all programs in this pack-
age. In all cases the meaning and token layout will always be the same
for all programs which read the statement.

To simplify some of the descriptions below two abbreviations are
used. The de�nition of the �rst is:

< Residue designator >:==

(
< Chain name > j < Residue name >
< Residue name >

This construction is used to specify a particular residue of a particular
chain. It is used both to refer to residues within a chain and to sequence
entries within a chain type. The second form is used when one wishes
to refer to a residue within the default chain (which has no name). For
example, \Aj123" designates residue 123 of chain A and \123" refers
to residue 123 of the default (nameless) chain.

The second abbreviation is

< Atom designator >:==< Atom > < Residue > < Chain >

This abbreviation is used when a particular atom is to be speci�ed. If
the atom belongs in the \chain with no name" the <Chain> �eld is
left blank.

22 SHARED I/O PROPERTIES

ASSUME RESIDUE_TYPE <Name> WHEN_CONTAINS N(<Name>)

This statement allows you to de�ne a default residue type for any
residue which contains all of the atoms listed, and no more. The puddle
of water that is contained in most coordinate �les presents a continuing
maintenance problem in TNT's sequence �le. Without the ASSUME
statement you would have to edit the sequence �le every time you added
or removed solvent.

The following example will, I hope, clarify this statement's use. If
your model has a great deal of DMSO, instead of creating individual
RESIDUE statements for each one you could add to your control �le
the statement

ASSUME RESIDUE TYPE DMSO WHEN CONTAINS S C1 C2 O

Built into TNT is the assumption that a residue which contains only
an atom named \OH" is of type \HOH". This is the PDB convention
for water molecules.

ATOM <type> <X> <Y> <Z> <Occ> <Atom designator>

ATOMC <type> <X> <Y> <Z> <Occ> <Atom designator>

ATOMG <type> <X> <Y> <Z> <Occ> <Atom designator>

These statements specify the parameters for the particular atom
named on the statement. The particular keyword used de�nes the co-
ordinate system in which the position of the atom is speci�ed. ATOM
statements use fractional coordinates, ATOMC statements use an or-
thogonal system (x is along a� | this is not the same convention used
in PDB format �les.) and ATOMG statements de�ne the position in
terms of map grid units. Internally, positions are stored in the orthogo-
nal system. To allow for the coordinate conversion upon input, ATOM
statements must be preceded by a CELL statement and ATOMG state-
ments must be preceded by both a CELL statement and a GRID state-
ment. For more information see Appendix A.

STANDARD TNT DATA STATEMENTS 23

CELL <a> <c> <Alpha> <Beta> <Gamma>

This statement gives the cell dimensions in �Angstroms and degrees.
It is required in almost every program and giving one when not re-
quired does no harm so one should always give a CELL statement.
Since ATOM and ATOMG statements require that a CELL statement
proceeds them, it is best to always have the �rst statement in the data
stream be a CELL statement.

CHAIN <Chain name> <Chain type> N(<Chain linkage>)

<Chain linkage> :==

<Residue name> <Residue designator> <Linkage type>

The CHAIN statement is used to specify the type of a particular
chain and the locations and types of any links between this chain and
other chains. The link is assumed to exist between the chain named on
this statement and the nearest symmetry image of the target chain.

The link de�ned on this statement will most likely be disul�de
bonds between separate polypeptides of an oligomer or connections
to symmetry-related molecules.

For example, the statement

CHAIN A ALPHA 44 Bj123 SS

says that chain A is of type ALPHA and that there is a SS (disul�de)
link between Aj44 and Bj123. The actual image of chain B linked to
may be in the same asymmetric volume as A or it may be a symmetry
image of B. The program will decide which symmetry operator to use.

For a more detailed description of this statement see the \TNT
Sequence File" chapter in the TNT Users' Guide.

24 SHARED I/O PROPERTIES

FORMFACTOR <Atom type> <Form factor parameters>

This statement allows the user specify a form factor approximation
for a particular atom type. The form factors for all the atom types
present in your structure must be de�ned each time you run a program
which calculates electron density (or structure factors) from the model.
A list of the de�nitions for many atom types is provided in the �le
$tntdata/formfactor.dat.

The atom type name on the statement can be up to 4 characters
long and must match the atom type name on the ATOMx statements.
The equation used to �t the form factors of the atoms is the sum of
three gaussians,

f(s) = A exp(�Bs2) + C exp(�Ds2) + E exp(�Fs2);

where s is 1=2 sin �=�. On the FORMFACTOR statement the numbers
are given in the order of A, B, C, D, E, F. The �rst pair should be the
pair with the largest exponential coe�cient (e.g. B > D > F). If
F is equal to zero then one has the form of the equation used by Lee
and Pakes (Acta Cryst. (1969). A25, 712) and the parameters from
their paper can be used. (The values used in TNT are not from this
paper, however there is no problem using the paper's values together
with the TNT numbers.) The temperature factor parameters, B, D,
and F, cannot be negative.

Here are some examples:

FORMFACTOR C 1.220272 46.308872 3.084011 15.230391 1.691442

FORMFACTOR N 2.504548 27.074999 3.262855 6.722432 1.219796

FORMFACTOR O 1.514483 27.753214 4.691878 8.545067 1.790204

These statements de�ne the form factors for atom types \C", \N", and
\O". The parameter F is not given so it is assumed to be zero.

STANDARD TNT DATA STATEMENTS 25

GEOMETRY <Residue type> <Restraint type> -

<Ideal value> <Sigma> N(<Atom name>)

GEOMETRY <Linkage type> <Restraint type> -

<Ideal value> <Sigma> N(<Atom name>)

GEOMETRY statements are used to de�ne geometry restraints for
particular residue or linkage types. (See the \Standard Geometry Def-
inition" chapter of the TNT Users' Guide.)

GRID <Grid X> <Grid Y> <Grid Z>

This statement gives the number of grid divisions per unit cell along
the crystallographic axes x, y, and z. This line must be included if the
coordinates are read in ATOMG format, or if an ATOMG coordinate
�le is to be created through the use of the PUNCH command. The
GRID statement must precede any use of ATOMG statements.

LATTICE <Text>

This statement gives the name of the lattice centering operators.
The codes to be used are listed in Table 3.1. The default, if no statement
is given, is Primitive.

The proper LATTICE and OPERATOR statements for all useful
space groups are given in the directory $tntsymmetry (TNT SYMMETRY:

on VMS). The name of the �le is simply the name of the space group
with a \.dat" appended. The �le which includes the de�nitions of the
space group P4322 is $tntsymmetry/p4322.dat.

While the LATTICE statement recognized R centered cells, TNT's
FFT code will not perform Fourier transforms in this setting. Rhom-
bohedral cells must be described in their hexagonal setting.

26 SHARED I/O PROPERTIES

Code Lattice
P Primitive
A A Centered
B B Centered
C C Centered
I Body Centered
R Rhombohedral Centered
F Face Centered

Table 3.1: Coded values for each lattice class

LINK <Residue name> <Target name> <Linkage type>

The link statement de�nes a stereochemical link between a residue
in \the chain with no name" and a residue in a symmetry image of
the chain. For instance, \LINK 128 128 SS" means that residue 128 is
connected to a symmetry image of itself by a disul�de bond.

Additional information can be found in the \TNT Sequence File"
chapter of the TNT Users' Guide.

OPERATOR <Symmetry operator> [; <Operator name>]

The OPERATOR statement allows the input of the symmetry op-
erators of the space group. One OPERATOR statement must be given
for each symmetry operation, and the symmetry operator is given in the
form used in the International Tables. Each operator may be given a
name by the user. Because the crystal lattice is given on the LATTICE

statement you should not enter the centering operators on OPERATOR

statements. Only list the equivalent positions as listed in the Interna-
tional Tables.

To specify a name for an operator terminate the algebraic de�nition
with a semicolon and enter the name at the end of the line. If the user
does not do this the program will select a name for the operator. Here
are some examples:

STANDARD TNT DATA STATEMENTS 27

OPERATOR X, Y, Z; IDENT

OPERATOR -Y, X-Y, Z; MON1

OPERATOR -X+Y, -X, Z; MON2

The proper LATTICE and OPERATOR statements for all useful
space groups are given in the directory $tntsymmetry (or TNT SYMMETRY:

on VMS). The name of the �le is simply the name of the space group
with a \.dat" appended. The �le which includes the de�nitions of the
space group P4322 is $tntsymmetry/p4322.dat.

OPTION {SET | CLEAR} N(<Option name>)

This statement either sets or clears the options named. Di�erent
programs have di�erent options which can be turned on or o� by this
mechanism. By default all options are cleared when the program starts.

The only option recognized by all programs is VERBOSE. When
this option is SET the program will write detailed information to the
standard output.

RESIDUE <Residue designator> <Residue type> -

N(<Residue linkage>)

<Residue linkage> :== <Residue name> <Linkage type>

This statement de�nes the residue type of a particular residue within
a chain type along with the targets and types of any linkages to other
residues within the same chain. For a more detailed description of this
statement the \TNT Sequence File" chapter of the TNT Users' Guide.

28 SHARED I/O PROPERTIES

RESOLUTION <Inner limit> <Outer limit>

RESOLUTION <Outer limit>

This statement speci�es the inner and outer resolution limits of the
crystallographic data in �Angstroms. The order of the resolution limits
on the statement is unimportant. If the inner limit is not given it is
presumed to be equal to in�nity, which means that all data from F(000)
to the outer limit will be used.

TRANSFORMATION <Name> -

{[{EULERANGLES 3<Values> TYPE {CROWTHER | HUBER | ROSSMANN} |

POLARANGLES 3<Values> TYPE {KABSCH | ROSSMANN} |

MATRIX 9<Values> |

AXIS <Angle> 3<Direction Cosines> }]

[CENTER 3<Values>]

[SHIFT {XYZ 3<Values> | B <Value> | OCC <Value>}]

SYSTEM {TNT | PDB | FRACTIONAL | GRID}

|

OPERATOR <Equivalent Position>}

Each transformation contains a rotation, a center, a translation,
and a coordinate system. When the transformation is de�ned with the
OPERATOR modi�er all of them are de�ned at once. With the other
modi�ers the parts are de�ned separately. Each part which is unde�ned
is assumed to be 1) a zero degree rotation, 2) centered at the origin,
3) no translation. In an attempt to avoid confusion the angular TYPE
and coordinate SYSTEM cannot be defaulted.

In all cases the order of application is 1) the rotation about the
center and 2) the translation.

A transformation with a particular name can only be de�ned once.
If the determinate of the MATRIX is not equal to one a warning will
be generated but the transformation will be accepted even though this
will usually be mistake.

STANDARD TNT DATA STATEMENTS 29

The Crowther Euler angles are de�ned as a rotation about the Z
axis, followed by a rotation about the new Y axis, and �nally a ro-
tation about the ultimate Z axis. The form of the rotation matrix is

+ + 0

� + 0

0 0 1

!
.

The Huber Euler angles are de�ned as a rotation about the Z axis,
followed by a rotation about the new Y axis, and �nally a rotation about

the ultimate X axis. The form of the rotation matrix is

+ + 0

� + 0

0 0 1

!
.

The Rossmann Euler angles are de�ned as Z, X, Z, with the form
+ + 0

� + 0

0 0 1

!
.

In Kabsch polar angles the �rst two angles de�ne the direction of
an axis and the third angle de�nes a rotation about that axis. The �rst
angle is the angle between the X axis and the projection of the rotation
axis onto the XY plane. The second angle is the angle between the Z
axis and the rotation axis. The �rst angle may have any value. The
second angle must lie between 0 and 180 degrees. The third angle may
also have any value.

In Rossmann polar angles the �rst two angles de�ne the direction
of an axis and the third angle de�nes a rotation about that axis. The
�rst angle is the angle between the X axis and the projection of the
rotation axis onto the XZ plane. The second angle is the angle between
the Y axis and the rotation axis. The �rst angle may have any value.
The second angle must lie between 0 and 180 degrees. The third angle
may also have any value.

WEIGHT N(<Restraint class> <Value>)

WEIGHT statements are used to specify a weight for each module.
Some modules, like that for stereochemistry, will accept a weight for
each of several di�erent classes of restraints, such as bond lengths and
bond angles.

30 SHARED I/O PROPERTIES

Standard TNT Command Statements

CHANGE {ATOM_TYPE | RESIDUE_TYPE | CHAIN_TYPE } -

OF <Atom, Residue, or Chain name> -

[FROM <Current name>] TO <New name>

This statement is used to change the type of an atom, residue, or
chain to some other type. It is most useful when converting �le format.
One can change the names used in the imported �le to match the TNT
standards automatically.

For example, there is a general problem with reading a PDB co-
ordinate �le in that the elemental type of each atom does not include
the ionization state. That is, the �le will indicate that a particular
atom is copper but it does not say whether the atom has a +1 or +2
charge. The ionization state a�ects the shape of the atom and must
be known to correctly calculate the scattering of the X-rays. The PDB
�le will contain the atom type �eld CU but TNT requires either CU+
or CU++. To correct this problem after the PDB �le has been read
enter the statement

CHANGE ATOM TYPE OF *jCOPPER:* FROM CU TO CU++

You will note that this particular example only changes the atom
type of the atoms in residue COPPER. All other atoms of type CU
will be una�ected. This behavior is what distinguishes the CHANGE
command from the RENAME command.

INCLUDE <File name>

This command tells the program to read input from the �le spec-
i�ed until its end is reached. Then the program continues to read
from the statement after the INCLUDE. INCLUDEd �les may contain
INCLUDEs. File names can be no longer than 128 characters. The
�lename is passed to the operating system without being modi�ed.

STANDARD TNT COMMAND STATEMENTS 31

Short Name Full Name
MAP Ten Eyck Map Format
DSN6 Frodo DSN6 Map Format
HKL Formatted Coe�cients

PACKED Unformatted Coe�cients

Table 3.2: Possible crystallographic data �le formats

PUNCH <Filename> {MAP | DSN6 | HKL | PACKED | ATOMx} -

[BLUR <Value>] [SCALE <Value>] -

[{GRID 3(<value>) | OVERSAMPLE <value>}] -

[{LAYOUT 6(<value>) | ASYMMETRIC}]

The PUNCH command is used to write information to a �le on disk.
All programs can write their coordinate list in either ATOM, ATOMC,
or ATOMG format. The program Convert can write coordinates in
other formats as well.

Those programs which work with maps and Fourier coe�cients can
write these data in a number of formats. One may PUNCH map or
coe�cient data in the formats listed in Table 3.2. It usually does not
matter to the program whether you choose to write this type of data
as a map or a coe�cient �le. The program will perform the necessary
calculations to ful�ll your request. Please remember that a Fourier
coe�cient �le is much smaller and quicker to write than a map �le.
Try to use coe�cients �les whenever possible.

Di�erent programs will produce di�erent kinds of maps or coe�-
cients. Please refer to the individual program descriptions to discover
what additional information is required on the PUNCH command to
control the operation of the program.

The characteristics of the map or coe�cient �le can be a�ected by
the SCALE, or BLUR modi�ers. Further a map �le can be modi�ed by
the GRID, OVERSAMPLE, LAYOUT, and ASYMMETRIC modi�ers.

32 SHARED I/O PROPERTIES

The SCALE modi�er is used to multiply all points in the map or
all the Fourier coe�cients by a constant factor. The BLUR modi�er is
used to add a temperature factor. (A blur cannot be applied to a map
read from disk. The calculations are simply too costly.)

If a coordinate �le has been given, the default map layout is a molec-
ular volume. If no coordinate �le has been supplied or the ASYMMET-
RIC modi�er has been included the map �le will contain an asymmetric
unit.

The program will choose a sampling rate (or grid) suitable for the
kind of data it is writing to the map �le. The user may override the
choice of the program with the OVERSAMPLE or GRID modi�er.
OVERSAMPLE is used to specify the sampling rate as a fraction of the
outer resolution limit. An OVERSAMPLE of three means to sample
the map three times for each distance equal to the resolution limit.
The sampling rate can be de�ned explicitly with the GRID modi�er.
When using GRID the user must be careful to obey the (complicated)
rules which limit the values which can be chosen. These restrictions
are discussed in Appendix D.

One can generate a map with an arbitrary layout with the LAYOUT
modi�er. The six numbers following LAYOUT exactly de�ne the limits
of the map to be written. If LAYOUT is used the grid must be de�ned
on the same line with GRID. The six values following the LAYOUT
modi�er are de�ned to be (xmin, xmax, ymin, ymax, zmin, zmax) in
the grid units.

A Fourier coe�cient �le always contains an asymmetric unit of data.

RENAME {ATOM <Chain>|<Residue>:<Atom> | ATOM_TYPE <Atom type> |

RESIDUE <Chain>|<Residue> |

RESIDUE_TYPE <Residue type> |

CHAIN <Chain> | CHAIN_TYPE <Chain type>} -

[FROM <Current name>] TO <New name>

This statement is used to change the name of some item with which
the program is currently familar. One can change the name of a partic-
ular atom, residue, or chain. In addition, the name of an atomic type,

STANDARD TNT COMMAND STATEMENTS 33

residue type, or chain type can be changed. It is most useful when
converting �le format. One can change the names used in the imported
�le to match the TNT standards automatically.

For example, there is a general problem with reading PDB format
coordinate �les in that the elemental type of each atom does not include
the ionization state. That is, the �le will indicate that a particular
atom is copper but it does not say whether the atom has a +1 or +2
charge. The ionization state a�ects the shape of the atom and must be
know to correctly calculate the scattering of the X-rays. The PDB �le
will contain the atom type �eld CU but TNT requires either CU+ or
CU++. To correct this problem after the PDB �le has been read enter
the statement

RENAME ATOM TYPE CU TO CU++

You will note that this statement changes all references to the old
atom type CU to CU++, you cannot change the type of only one atom
out of a group with the RENAME command.

As a further example consider the problem posed by an old method
for naming the atoms in the side chains of amino acids. In this system
the terminal nitrogen atoms of an arginine residue were named NEE1
and NEE2 instead of the current form NH1 and NH2. When reading
a �le from these bygone days these names must be changed. This
operation is accomplished with the commands

RENAME ATOM *j*:* FROM NEE1 TO NH1

RENAME ATOM *j*:* FROM NEE2 TO NH2

Note that by using wild cards in specifying the atoms to be renamed
we avoid having to �gure out which residues are arginines.

34 SHARED I/O PROPERTIES

Chapter 4

The Stereochemical Module

This module analyzes the agreement between the present model's stere-
ochemistry and ideal geometry. The precise functional form of this term
is the sum of the square of the deviation from ideality for every bond
length, bond angle, torsion angle, pseudorotation angle, trigonal car-
bon, general plane, and temperature factor correlation. It also adds in
the sum of the square of the di�erence between the minimum distance
allowed between two non-bonded atoms and the distance actually found
whenever the two atoms are too close together.

A feature of this module is that any geometry restraint can span
between a molecule in the asymmetric unit and one in a neighboring
asymmetric unit. This ability is useful for keeping solvent molecules
on the surface in line, and restraining the geometry of cross-links, or
larger solvent molecules which sit on special positions.

All of the functions of this module are completed with the program
Geometry. To perform the calculations required for a long loop one
would use either the CURVATURE or GRADIENT command. In a
short loop the FUNCTION command should be used because it causes
only the function value to be calculated.

35

36 THE STEREOCHEMICAL MODULE

GEOMETRY

Stereochemical Program

This program takes a coordinate �le and a de�nition of the ideal
geometry for that structure and calculates the function value and the
�rst and second derivatives with respect to the positional parameters
of the atoms. It can also provide various statistical measures of how
closely the molecular model obeys the ideal geometry restraints. The
stereochemical restraints this program understands are bond lengths,
bond angles, torsion angles, pseudorotation angle of �ve membered
rings, planarity about a trigonal atom, general planarity, non-bonded
contacts, B correlation, and chiral centers. Chirality is a two state,
discontinuous function and therefore cannot be re�ned. The program
informs the user when an atom with incorrect chirality is encountered.

The program has functions beyond that of re�nement. With the
SCREEN command one can determine the places in the model with
the greatest disagreement with standard geometry. The REPORT GE-
OMETRY command can be used to compare the average and standard
deviation for each geometry restraint, as determined by actually looking
at coordinates, with any particular library. This allows one to generate
new libraries, or look for errors in the existing ones.

Required Input

Geometry deals with stereochemistry. It must know the present struc-
tural model of the molecule and the standard geometry for that mol-
ecule. The means of describing this information is presented in the
\TNT Sequence File" and the \Standard Geometry De�nition"chapters
of the TNT Users' Guide. To allow the program to �nd \bad" contacts
it must be given the minimal distances allowed between each atom type
as well as the symmetry operators for the structure's space group. This
information is entered on CONTACT, LATTICE, and OPERATOR
statements.

GEOMETRY 37

Options

Geometry recognizes two options. These options can be set with the
OPTION statement described in the \Standard TNT Data Statements"
section on Page 27. As an example, the activation of the VERBOSE
option would require the statement

OPTION SET VERBOSE

� NOCONTACTS

This option causes the program to ignore all potential bad con-
tacts in all its operations. This is useful in the early re�nement of
models generated by molecular replacement. One usually prefers
to re�ne the model a bit before model building to �x up the crys-
tal contacts.

� VERBOSE

The Verbose option causes the program to write additional infor-
mation to the log �le about the choices it makes.

38 THE STEREOCHEMICAL MODULE

Unique Input Statements

CONTACT <Type> <Type> <Distance> <Standard deviation>

The CONTACT statement de�nes the allowed contact distances for
non-bonded contacts between atoms. Contacts between non-bonded
atoms are screened every time the other geometry restraints are checked,
and if two non-bonded atoms are closer than the minimum contact dis-
tance they will be agged as a bad contact and will be pushed apart by
re�nement. Whether two atoms are bonded is determined by checking
the list of standard bond lengths. All 1-2, 1-3, and 1-4 contacts are
ignored. These kinds of interactions are covered in bond length, bond
angle, and torsion angle re�nement, respectively, and should not be
considered again.

The information that should be placed on this statement is the
elemental types of the two elements, the minimum contact distance,
and the individual standard deviation for that particular contact, in
the following form:

CONTACT O C 2.8 0.1

This means that the minimum non-bonded contact distance allowed
between an atom of carbon and an atom of oxygen is 2.8�A with a
sigma of 0.1�A. (Note: This restraint is based only on the type of the
atoms involved where the other kinds of restraints depend on the name
of the atom and the residue type.)

A library of CONTACT statements for many atom types is pro-
vided in the �le $tntdata/contact.dat (in TNT DATA:CONTACT.DAT

on VMS). A description of the sources of information used to generate
these values is contained within this �le.

It is quite di�cult to �nd a proper set of values for the
closest allowed distances between to element types. The
values in contact.dat have been purposely chosen to be
small. This ensures that a contact agged \bad" will really

Unique Input Statements 39

be bad. However there are some cases where the local chem-
istry allows two atoms to approach one another so closely
the the library de�nes a contact as \bad" when it really is
not. These particular cases should be EXCLUDEd.

EXCLUDE [<Chain>|]<Residue>[:<Atom>] -

[<Chain>|]<Residue>[:<Atom>]

This statement causes any close contacts between atoms in one
group with any atom in the other group to be ignored when decid-
ing what the bad contacts are. A group is de�ned by giving the chain
name, residue name, and atom name of the atom whose contacts are
to be ignored. Wild card may be placed in any position. The default
residue and atom names are wild cards, but the default chain name is
the \chain with no name". To specify an entire residue one gives the
residue name. To specify a particular atom one gives the residue name
and the atom name separated by a colon. To specify all atoms with
the same name leave the residue name blank and provide a wild card
(*") as the chain name. Here are some examples.

EXCLUDE 143 167

EXCLUDE 67:O SOL1:O65

EXCLUDE *j:O *j:C

In the �rst example all contacts between any atoms in residue 143
with atoms in residue 167 will be ignored. The second example states
that if a bad contact is found to exist between atom O of residue 67 and
atom O65 of residue SOL1 that contact will be ignored. In the third
example the program will ignore all contacts between atoms named O
and atoms named C anywhere in the structure.

Here is an example of a use of the EXCLUDE statement which
uses the oligomer de�nition of Cro given as an example in the \TNT
Sequence File" chapter of the TNT Users' Guide.

40 THE STEREOCHEMICAL MODULE

EXCLUDE Oj Oj
EXCLUDE Aj Aj
EXCLUDE Bj Bj
EXCLUDE Cj Cj

These EXCLUDE statements will cause all non-bonded contacts
within CRO chains to be ignored leaving only interchain contacts to be
listed and re�ned.

WEIGHT BOND <x> TORSION <x> PLANE <x> PSEUDO <x>

WEIGHT ANGLE <x> TRIGONAL <x> BCORREL <x> CONTACT <x>

This statement is used to specify the weights to be applied to each
class of stereochemical restraint. Each name of a restraint type is fol-
lowed by the weight that type is to be given. Chiral centers cannot be
re�ned and therefore there is no way to de�ne a weight for that class
of restraints (If you want to call something that cannot be re�ned a
restraint).

There is a great deal of exibility in the arrangement of the weight
de�nitions. The weights can be de�ned in any order, and can be placed
on several di�erent WEIGHT statements. Geometry will ignore weights
from other modules.

Command Statements 41

Command Statements

These statements cause Geometry to perform a particular action using
the data that has already been entered on other statements. Most of
the examples INCLUDE the �le $tntdata/tntgeo v010.dat. This �le
contains the full set of standard geometry for TNT.

In addition your control �le, presumed here to be named your.tnt,
must include the CELL statement, space group de�nition, sequence �le,
and your weights. In addition, your control �le must also de�ned the
standard geometry for any unusual groups in your model.

CURVATURE <File name>

This command is used in the long loop of re�nement. It causes the
function value, and the �rst and second derivatives of the geometry re-
straints to be calculated and written to the �le speci�ed. This command
must be preceded by at least the geometry de�nition, a coordinate set,
the space group, and a WEIGHT statement.

$tntbin/geometry << $eof

INCLUDE $tntdata/tntgeo_v010.dat

INCLUDE your.tnt

INCLUDE init.cor

CURVATURE geometry.dat

$eof

if ($status >< 0) then exit 1

42 THE STEREOCHEMICAL MODULE

FUNCTION <File name>

This command is used in the short loops of re�nement. It causes
only the function value for the geometry restraints to be calculated
and written to the �le speci�ed. This command must be preceded by
at least the geometry de�nition, a coordinate set, the space group, and
a WEIGHT statement.

$tntbin/geometry << $eof

INCLUDE $tntdata/tntgeo_v010.dat

INCLUDE your.tnt

INCLUDE shifted.cor

FUNCTION geometry.dat

$eof

if ($status >< 0) then exit 1

GRADIENT <File name>

This command is used in the long loop of re�nement when the
method of minimization is to be either steepest descent or conjugate
gradient. It causes the function value and gradient for the geometric re-
straints to be calculated and written to the speci�ed �le. This command
must be preceded by at least the geometry de�nition, a coordinate set,
the space group, and a WEIGHT statement.

$tntbin/geometry << $eof

INCLUDE $tntdata/tntgeo_v010.dat

INCLUDE your.tnt

INCLUDE init.cor

GRADIENT geometry.dat

$eof

if ($status >< 0) then exit 1

Command Statements 43

REPORT {GEOMETRY | STRUCTURE | SYMMETRY}

There are three di�erent report types listed below.

� GEOMETRY

This command causes the printing of the geometry statistics on
a per geometry restraint basis. For each restraint entered in the
geometry library the mean and r.m.s. deviation from the standard
value of the occurrences of that restraint will be listed. For ex-
ample, this listing would contain the average and r.m.s. deviation
for the CA, CB bond length in all ALA residues in the structure.
This listing is useful when looking for systematic deviations from
the standard value of a geometry restraint in the library.

� STRUCTURE

This command causes the printing of a list of a small number
of interesting things about a structure. If a CELL statement
has been given the cell constants will be echoed along with the
reciprocal cell constants and the orthogonalization and deorthog-
onalization matrixes. If atomic coordinates have been given the
number of atoms will be listed along with the number of residues
in the structure. In addition the location and extent of each chain
will be printed.

� SYMMETRY

This command causes the printing of a list of the symmetry op-
erators that have been entered. Each symmetry matrix is printed
in crystallographic coordinates with the translation vectors added
so that when a symmetry operator is applied to a molecule a near-
est neighbor molecule is generated. Each operator is listed with
the name that the SCREEN listing uses to refer to that opera-
tor when a bad contact is found between atoms of two symmetry
related molecules.

44 THE STEREOCHEMICAL MODULE

SCREEN <Number>

This command is used to get a list of the worst so many bonds,
angles, etc.. It requires that the geometry library, space group, and a
coordinate set be given.

$tntbin/geometry << $eof

INCLUDE $tntdata/tntgeo_v010.dat

INCLUDE your.tnt

INCLUDE shifted.cor

SCREEN 20

$eof

if ($status >< 0) then exit 1

Chapter 5

The Noncrystallographic
Symmetry Module

The function minimize by this module, when the noncrystallographic
symmetry is used as restraints is

clustersX
c=1

chains�1X
i=1

chainsX
j=i+1

atomsX
atm=1

j(Rcixi(atm) + tci)� (Rcjxj(atm) + tcj)j2

Thus, for each cluster there is a loop over all unique pairs of chains.
The distance between each corresponding atom, after being moved to
the prototypical location, is squared and summed.

A basic assumption of this module is that the objects which are
related by the noncrystallographic symmetry are identi�ed as individual
chains, where the equivalent residues are given the same name in each
chain. The old style of simply giving the second molecule's residues
numbers much larger than the �rst will not work here. This assumption
also means that the related molecules must be chemically identical. You
cannot de�ne noncrystallographic relations between two chains which
are only similar in sequence, they must be identical.

When re�ning a model in the presence of noncrystallographic sym-
metry constraints the parameters of the model can be stored in the
coordinate �le in two states. In one state the model is expanded by the
symmetry and the full asymmetric unit is present. In the other state

45

46 THE NONCRYSTALLOGRAPHIC SYMMETRY MODULE

only the unique atoms of the model are present. The nomenclature
for these two states are the \scattered" state and the \gathered" state.
The scatter and gather commands are used to change from one state
to the other.

In the scattered state the atoms are named in the usual fashion.
On the other hand, in the gathered state the atoms related by ncs
symmetry are placed in a pseudo-chain given the name from the relevant
CLUSTER statement. Because of this change in chain name a gathered
coordinate set cannot be used in crystallographic calculations without
being scattered �rst.

NCS 47

NCS

Noncrystallographic Symmetry Program

NCS is a program for performing the basic operations required to
use noncrystallographic symmetry in re�nement. It has two classes of
commands depending on whether this symmetry is being constrained
or restrained. When noncrystallographic symmetry constraints are be-
ing applied the SCATTER, GATHER, and PUNCH commands are
used. With restraints the CURVATURE, GRADIENT, and FUNC-
TION commands are used. These commands are described in the
\Command Statements" section.

Unique Input Statements

CLUSTER <Name> N([RESIDUES <Residue range>]) -

{CHAINS N(<Chain>) |

NCS N(<Chain> <Operator>)}

The CLUSTER statement is used to de�ne the chains which are
related by noncrystallographic symmetry, and the portions of those
chains for which the correspondence is valid. At least one CLUSTER
statement must be given each time NCS is ran. If a residue range is
given the sequence �le must be INCLUDEd.

The CHAINS options will continue reading chain names until the
end of line is reached. Therefore all RESIDUES options must come
before it.

The NCS option is used to de�ne the name of the operator which
moves that chain onto the prototype. The actual operators are supplied
on TRANSFORMATION statements. The NCS option will continue
to read pairs of chain names and operator names until the end of line
is reached. Therefore CHAINS and NCS must be entered on separate
CLUSTER statements.

48 THE NONCRYSTALLOGRAPHIC SYMMETRY MODULE

WEIGHT NCS <Value>

This statement is used to specify the weight of the noncrystallo-
graphic symmetry in relation to the other types of restraints currently
being used. The weight should be chosen so that the resulting agree-
ment between related molecules matches your expectations. Large mol-
ecules with good noncrystallographic symmetry should agree with an
r.m.s. comparable to the error in the coordinates. The actual r.m.s. may
be higher if there are real di�erences between the mates.

There is a great deal of exibility in the arrangement of the weight
de�nitions. The weights can be de�ned in any order, and can be placed
on several di�erent WEIGHT statements. NCS will ignore weights from
other modules.

Command Statements 49

Command Statements

Here follows a description of the command statements in NCS. Since
is would be pointless to run this program if there were no noncrystal-
lographic symmetry the de�nition of the regions of the model covered
by this symmetry is required for all commands. These de�nitions are
made with the CLUSTER statements de�ned above. The examples
given for each command assume that the CLUSTER statements have
been placed in the TNT control �le yours.tnt. The examples given
below presume that the NCS weight and sequence �le is also given in
the control �le.

The SCATTER command requires, in addition, the noncrystallo-
graphic symmetry operators, since they cannot be calculated from the
unique atoms.

CURVATURE <File name>

This command is used in the long loop of re�nement. It causes
the function value, and the �rst and second derivatives of the NCS
restraints to be calculated and written to the �le speci�ed. This com-
mand must be preceded by at least the NCS de�nition, a coordinate
set containing a full set of chains, and a WEIGHT statement. You will
need the sequence �le if residue ranges are used in the cluster de�nition.

The noncrystallographic symmetry operators themselves are op-
tional. If they are not supplied NCS will use the current coordinates
to derive them.

$tntbin/ncs << $eof

INCLUDE yours.tnt

INCLUDE init.cor

CURVATURE ncs.dat

$eof

if ($status >< 0) then exit 1

50 THE NONCRYSTALLOGRAPHIC SYMMETRY MODULE

FUNCTION <File name>

This command is used in the short loops of re�nement. It causes
only the function value for the NCS restraints to be calculated and
written to the �le speci�ed. This command must be preceded by at
least the NCS de�nition, a coordinate set containing a full set of chains,
and a WEIGHT statement. You will need the sequence �le if residue
ranges are used in the cluster de�nition.

The noncrystallographic symmetry operators themselves are op-
tional. If they are not supplied NCS will use the current coordinates
to derive them.

$tntbin/ncs << $eof

INCLUDE yours.tnt

INCLUDE shifted.cor

FUNCTION ncs.dat

$eof

if ($status >< 0) then exit 1

GATHER

The GATHER command will average together all the symmetry
mates in a noncrystallographic cluster to produce a prototype molecule
for each CLUSTER statement. It averages the coordinates, gradients,
and curvatures for each atom in each cluster. The unaveraged atoms
are then removed from the atom list in the program.

The GATHER command is used when re�ning a model with non-
crystallographic constraints. for example, after Rfactor has calculated
the gradient and curvature for the entire cluster (or set of clusters) NCS
will move those average values to the prototype's orientation and av-
erage them. The averaged gradient and curvature is presented to Shift
instead of the originals.

Command Statements 51

The noncrystallographic symmetry operators themselves are op-
tional. If they are not supplied NCS will use the current coordinates to
derive them. Either the operators must be supplied on TRANSFOR-
MATION statements or the coordinates must be given. If both are
supplied the TRANSFORMATION statements have precedence.

In the example below, the coordinates from init expanded.cor

and the gradient and curvature from rfactor expanded.dat are gath-
ered into the CRO prototype using the noncrystallographic symmetry
operators from the �le cluster.ncs After the gathering the results are
PUNCHed to rfactor.dat

The TNT control �le is presumed to contain the CLUSTER state-
ment \CLUSTER CRO CHAINS O A B C". The cluster is named
CRO on the CLUSTER statement. init expanded.cor contains four
chains | O, A, B, and C. rfactor.dat contains only one | CRO.

$tntbin/ncs << $eof

INCLUDE cro.tnt

INCLUDE init_expanded.cor

INCLUDE rfactor_expanded.cor

INCLUDE cluster.ncs

GATHER

PUNCH rfactor.dat CURVATURE

$eof

if ($status >< 0) then exit 1

GRADIENT <File name>

This command is used in the long loop of re�nement when the
method of minimization is to be either steepest descent or conjugate
gradient. It causes the function value and gradient for the noncrystal-
lographic symmetry restraints to be calculated and written to the �le
speci�ed. This command must be preceded by at least the NCS de�ni-
tion, a coordinate set containing a full set of chains, and a WEIGHT

52 THE NONCRYSTALLOGRAPHIC SYMMETRY MODULE

statement. You will need the sequence �le if residue ranges are used in
the cluster de�nition.

The noncrystallographic symmetry operators themselves are op-
tional. If they are not supplied NCS will use the current coordinates to
derive them. If both are given the operators on the TRANSFORMA-
TION statements are used.

$tntbin/ncs << $eof

INCLUDE cro.tnt

INCLUDE init.cor

GRADIENT ncs.dat

$eof

if ($status >< 0) then exit 1

PUNCH <File name> {ATOM | ATOMC | ATOMG |

GRADIENT | CURVATURE |

NCS}

The PUNCH command is used to get information out of NCS.
The actual information produced depends on the format of the �le
requested.

� ATOM, ATOMC, ATOMG

The program writes a coordinate �le with the name and format
designated. The command must be preceded by a coordinate set.
If ATOM format is used a CELL statement should be given and,
in addition, a GRID statement should be given if ATOMG is
used.

� GRADIENT, CURVATURE

The program writes the current gradient (and curvature if CUR-
VATURE was speci�ed) to the named �le. When applying non-
crystallographic symmetry constraints, this command is used af-
ter the GATHER command has averaged the gradient and cur-
vature from each individual chain into that of the prototype.

Command Statements 53

� NCS

The program writes the full list of noncrystallographic symmetry
operators to the �le using CLUSTER and TRANSFORMATION
statements. If a set of operators were not entered into the pro-
gram the current coordinates and CLUSTER statements will be
used to determine these operators.

SCATTER

This command is used to expand the prototype molecule by the
noncrystallographic symmetry operators to generate the entire cluster
of molecules. It will expand all occurrences of noncrystallographic sym-
metry. All of the current information about the atoms of the prototype
are expanded: coordinates, gradients, and curvatures. The prototype,
itself, will be removed from the list of coordinates.

The noncrystallographic symmetry operators must be supplied to
use the SCATTER command, in this example in the �le ncs symmetry-

.dat. In addition you will need the sequence �le if residue ranges are
used in the cluster de�nition.

$tntbin/ncs << $eof

INCLUDE cro.tnt

INCLUDE shifted.cor

INCLUDE ncs_symmetry.dat

SCATTER

PUNCH shifted_all.cor ATOMC

$eof

if ($status >< 0) then exit 1

SCREEN <Number>

This command is used to get a list of the worst agreements between
the similar chains. It will only consider the regions of similarity de�ned

54 THE NONCRYSTALLOGRAPHIC SYMMETRY MODULE

on the CLUSTER statements. It requires that the NCS de�nition and
a coordinate set be given. You will need the sequence �le if residue
ranges are used in the cluster de�nition.

Of course, if you are constraining ncs there will be no deviants to
list.

$tntbin/ncs << $eof

INCLUDE cro.tnt

INCLUDE shifted.cor

SCREEN 20

$eof

if ($status >< 0) then exit 1

Program Operation

When re�ning a model using noncrystallographic symmetry restraints
the program NCS is run is a fashion similar to the modules for other
types of observations. It is given the current coordinate set and a
de�nition of the noncrystallographic symmetry. In the long loop the
CURVATURE command is used while in the short loop it is the FUNC-
TION command.

When using constraints the program is run in a very di�erent fash-
ion. It now becomes a pre- and postprocessor for the other modules.
The atoms of the prototype must be expanded to �ll the asymmetric
unit of the crystal. After the modules have completed, NCS is run to
reduce the gradient and curvature back to the prototype. In the short
loops the the function values do need to be reduced so NCS only needs
to be run to SCATTER each shifted.cor.

One cannot construct a generic script for re�ning a model with
constrained noncrystallographic symmetry. The problem is that the
model must be \scattered" when the modules are ran but \gathered"
when Shift is ran. This means that the all references to atoms in the
control �le must be made to atoms in the individual chains but the
COMBINE and CONSTANT statements must refer to the prototypical
chains. They cannot be placed in the control �le. A script must be

Command Statements 55

edited to place the proper parameter editing statements in the input
for Shift.

Here is an example of a script which constrains a model to noncrys-
tallographic symmetry. This �le is kept in $refroot/doc/prototype/-
tnt cycle con ncs. As usual the coordinates are stored in init.cor

and the �nal gradient and curvature are stored in rfactor.dat and
geometry.dat. The CLUSTER statement is given in the control �le.
The transformations which relate the individual chains to the proto-
type are stored on CLUSTER and TRANSFORMATION statements
in a �le by themselves. The prototype script needs to be modi�ed at
the places marked by \<<< . . . >>>".

56 THE NONCRYSTALLOGRAPHIC SYMMETRY MODULE

Chapter 6

The X-ray Crystallographic
Module

This module calculates the function value, gradient, and curvature for
the term of the function that involves the crystallographic data. This
term is

f(x) =
X
hkl

1

�2o(hkl)
(jFo(hkl)j � jFc(hkl;x)j)2:

Because of the number of reections in the average protein structure
and the amount of time it takes to calculate them from a structural
model, this module uses the largest portion of CPU time of the entire
re�nement cycle.

In a long loop this module must be able to calculate the function
value, gradient, and curvature of the function. To calculate any of these
quantities structure factors must be calculated from the current model
and scaled to the observed structure factors. Once this is done the
function value and curvature can be directly calculated. The gradient
is calculated via the method of Agarwal which requires that a di�erence
map be convoluted with a separate function for each parameter in the
model. The program Rfactor performs all these tasks.

In the long loop both the term's value and gradient must be cal-
culated while in a short loop only the term's value is required. The
curvature will be required if the gradient/curvature or preconditioned
conjugate gradient methods of re�nement are to be used.

57

58 THE X-RAY CRYSTALLOGRAPHIC MODULE

RFACTOR

Structure Factor Comparison Program

Rfactor handles many of the functions that are required when two
lists of structure factors are compared. It examines two sets of structure
factors and �nds all reections which occur in both. It will scale the
two data sets to one another, allowing the user to choose between many
options. It can calculate the R-value between the two lists, and also
generate di�erence Fourier coe�cients and maps of several types. In
addition it will generate the function value, gradient, and curvature for
the RFACTOR, REALSPACE, ROTATION, and PHASE modules. In
re�nement it is run in both long and short loops. It can either read the
Fc's from a �le or calculate them from a map or coordinates.

In the long loop of a re�nement cycle Rfactor compares the Fo's
and Fc's and determines the parameters of the scaling function. The
program also writes out the parameters of the scale function so that
they may be read back during the following short loops. It then calcu-
lates and writes the function value and gradient for this term. If the
curvature is desired RFACTOR will calculate it as well.

In a short loop the parameters of the scaling function will be read
from the �le produced in the long loop and the crystallographic term's
sum will be calculated using those scale factors.

Rfactor calculates the maps used when model building. It can pro-
duce Fo-Fc, 2Fo-Fc, 3Fo-2Fc, and Fo-Fo maps in either Ten Eyck MAP
format or A. Jones' DSN6 format.

The Scaling Function

The scaling function is constructed so that it can compensate for an-
isotropic decay in the scattering and the lack of a solvent continuum in
the model. (The solvent continuum correction was suggested in Moews
and Kretsinger (J. Mol. Biol. (1975). 91, 201-228)). The function is

exp�1

4
Bs2 exp�1

4
stBanisos

�
1�Ksol exp�1

4
Bsols

2

�
;

RFACTOR 59

where s = (h k l) and s =
p
sts:

The parameter B is an isotropic temperature factor correction. Baniso

is a purely anisotropic temperature factor correction. Ksol is the ratio
of the average solvent density and the average protein density. Bsol

is an additional temperature factor used to blur the solvent relative
to the protein. In addition there is a scale factor (K), independent
of resolution, by which Fo is multiplied, which brings the observations
onto an absolute scale. You have the option of either allowing Rfactor
to choose a value for each of these parameters, or of setting any or all
of the values yourself.

The anisotropic temperature factor (Baniso) is a symmetric matrix
containing 6 unique elements. They are named B11, B22, B33, B12,
B13, and B23. Many space groups will restrict the values of these ele-
ments. Rfactor takes care of enforcing these restrictions. The matrix is
required to be purely anisotropic and this is ensured by the requirement
that B11, B22, and B33 sum to zero.

Using the SET Statement

There are three general cases where Rfactor is run: calculating an R-
value, calculating a map or Fourier coe�cients, and running re�nement.

When calculating an R-value between two data sets, or producing a
map or coe�cients, you want the best scale factors so that you can get
the best agreement between the two data sets. Therefore, you would
allow Rfactor to choose all scale factors.

During re�nement you want the individual temperature factors of
the model to absorb the signal which causes the parameter B to be non-
zero. The model cannot adjust to this signal if the signal has already
been eliminated. B must be �xed with a value of zero in all re�nement,
and Rfactor does this automatically.

Additional restrictions must be placed on the scale factors if the
data sets do not cover large areas of reciprocal space. These matters
are discussed in the \Setting Up a Project" chapter of the TNT Users'
Guide.

60 THE X-RAY CRYSTALLOGRAPHIC MODULE

Options

Rfactor recognizes four options. These options can be set with the OP-
TION statement described in the \Standard TNT Data Statements"
section of the \Shared I/O Properties" chapter. The �rst two op-
tions simply a�ect how the agreement statistics are printed in the log
�le. The SIGMA option makes a substantive change to the re�nement
method. As an example, the activation of the SIGMA option would
require the statement

OPTION SET SIGMA

� FOM

This option causes the Rfactor command \REPORT RFACTOR"
to print additional statistics describing the agreement between the
two data sets. These statistics are weighted by the �gure of merit
and show the means and RMS's when those reections which are
well phased are given greater weight.

� INTENSITY

This option causes the Rfactor command \REPORT RFACTOR"
to list the statistics in intensity shells instead of the usual resolu-
tion shells.

� SIGMA

This option causes Rfactor to weight each reection by 1=�2o when
calculating the function value, curvature, and Fourier coe�cients.
The SIGMA option is preferred if the sigmas in the FO �le are
reliable. When this option is set additional statistics are printed
in the log �le. Sigma weighting is used when calculating scale fac-
tors, anisotropic temperature factors, Sim weighting coe�cients,
the RFACTOR function value and curvature, the ROTATION
function value and curvature, and di�erence coe�cients.

� VERBOSE

The Verbose option causes the program to write additional infor-
mation to the log �le about the choices it makes.

Unique Input Statements 61

Unique Input Statements

ACCEPT FO-FC <Upper limit>

ACCEPT FO <Lower limit> <Upper limit>

ACCEPT FC <Lower limit> <Upper limit>

This statement allows the user to specify particular limits to the
acceptable values for the di�raction data. It permits limits to be placed
on the value of FO, FC, and FO-FC. These limits are speci�ed in the
units of the di�raction data after scaling. Therefore all data is used to
determined the scale factors.

FC <File name> [FORMAT {HKL | PACKED | MAP}]

This statement gives the name of the �le which is the source of the
calculated structure factors. If a map �le is given the calculated struc-
ture factors are arrived at by inverting the map. If no FC statement is
given the Fc's will be calculated from the coordinates of the model.

FILE <File Id> <File name> [FORMAT (HKL | MAP | PACKED)] -

[SCALE <Value>] [BLUR <Value>]

This command describes an external binary data �le to the program.
This �le is subsequently referred to by the arbitrary \File Id". If the
�le's format is not HKL, which is the default, the type of �le may be
given via the FORMAT option. When the data are read from the �le a
scale factor and blur may be applied. Because of the extreme di�culty
of applying a blur to an electron density map, when the �le is a map �le,
the BLUR option is presumed to indicate that the map has a already
been blurred by the indicated amount.

In Rfactor this statement is only useful when using the AGARWAL
and NORMAL MATRIX commands.

62 THE X-RAY CRYSTALLOGRAPHIC MODULE

FO <File name> [FORMAT {HKL | PACKED | MAP}]

This statement gives the name of the �le which is the source of the
observed structure factors. If a map �le is given the observed structure
factors are arrived at by inverting the map. If no FO statement is given
the Fo's will be calculated from the coordinates of the model. (I know
this sounds a little weird, to de�ne the structure factors calculated
from a model to be Fo's. However sometimes it is useful to compare
two calculated data sets, such as when someone wishes to determine
just how di�erent two models are.)

SET [K <Value>] [B <Value>] [KSOL <Value>] [BSOL <Value>]

[B11 <Value>] [B22 <Value>] [B33 <Value>]

[B13 <Value>] [B13 <Value>] [B23 <Value>]

This statement allows the user to set the value of any of the scaling
function parameters. Any parameters which are not explicitly set are
calculated by Rfactor by minimizing the squared di�erence between the
two data sets. A SET statement clears all information about previous
SET statements and resets any scale factors which have already been
determined.

If any anisotropic scale factor component is set to zero they all are.
If Ksol is set to zero Bsol is as well.

If the SIGMA option is set, any unspeci�ed parameters are �t with
each reection weighted by 1=�2o .

SIM [<A>]

This statement causes Sim weighting to be applied to any di�erence
coe�cients later produced with the PUNCH command. This statement
would be used whenever a Sim weighted map is desired. The two pa-
rameters are optional. If they are given (As with all programs in this

Unique Input Statements 63

package typing 0.0 is di�erent than typing nothing at all. 0.0 is accepted
as a zero, not as an indication that the default is desired.) they specify
a single Gaussian �t to the r.m.s. di�erence coe�cients. If they are not
given on the statement the program will calculate the best values for
A and B and apply them to the data.

If the SIGMA option is set the data used to determine A and B are
weighted by 1=�2o .

WEIGHT [RFACTOR <Value>] [ROTATION <Value>]

WEIGHT [PHASE <Value>] [REALSPACE <Value>]

This statement allows the user to specify a weighting factor that will
be applied to the function value, gradient, and curvature written out
by the FUNCTION, GRADIENT, and CURVATURE commands. If a
weight for the current module is not given a weight of 1.0 is assumed.
During the short loops the same weight must also be applied. To ensure
that this will occur you should keep the WEIGHT statement in your
TNT control �le.. If a weight for another restraint (such as BOND,
or ANGLE) is given to this program on a WEIGHT statement the
additional weights will be ignored.

64 THE X-RAY CRYSTALLOGRAPHIC MODULE

Command Statements

In the following section each of Rfactor's commands are described and
a small example is given. In these examples many of the required
parameters are presumed to be read from the TNT control �le, here
assumed to be named your.tnt. Rfactor presumes that this �le will
contain the cell constants, the de�nition of the space group, the name of
the observed structure factor �le, and the resolution limits of the data
to be considered. Some commands do not need all of this information
but you will want it in your control �le anyway.

AGARWAL <File name> SOURCE <File Id> -

[MODULE <Name>] -

[BLUR <Value>] -

[{GRID 3(<Value>) | OVERSAMPLE <Value>}]

The AGARWAL command causes the program to calculate the gra-
dient of a function via an Agarwal-type convolution. The Fourier coe�-
cients described with the SOURCE modi�er will be used to generate the
\di�erence map" required by the calculation. The <File Id> must have
been de�ned on a FILE statement. The resulting gradient is written
to the �le <File name> with whatever module identi�er was speci�ed.
You may override the default choice for blur and grid using the proper
modi�ers. By default the blur and grid will be chosen by Rfactor to
provide accurate results in a short amount of time.

A detailed description of the Fourier coe�cients which you are re-
quired to calculate can be found in the \Creating Your Own Module"
chapter.

$tntbin/rfactor << $eof

INCLUDE $tntdata/formfactor.dat

INCLUDE your.tnt

INCLUDE init.cor

FILE COEFS fo-fc.pak FORMAT PACKED

AGARWAL rfactor.dat SOURCE COEFS MODULE MY_MODULE

$eof

if ($status >< 0) then exit 1

Command Statements 65

CURVATURE <File name> -

[MODULE {RFACTOR | REALSPACE | PHASE}]

This statement causes the function value, gradient, and curvature
for the speci�ed module to be calculated and written to the �le name en-
tered on the input statement. (The default module is RFACTOR.) The
scale factor required in the short loop are written to the �le scales.dat.

The CURVATURE command cannot be used with the ROTATION
module. The calculation of curvatures and gradients in this module
are more complicated than the others. You need to read the \Rotation
Function Re�nement Module" section of the \Other Modules in TNT"
chapter.

Required for these calculations are the cell constants, the resolution
limits, the symmetry operators, the lattice class, the Fo �le name, the
atomic form factors, the coordinate �le, and the weight for this term.
An example follows:

$tntbin/rfactor <<$eof

INCLUDE $tntdata/formfactor.dat

INCLUDE your.tnt

INCLUDE init.cor

CURVATURE rfactor.dat

$eof

if ($status >< 0) then exit 1

FUNCTION <File name> -

[MODULE {RFACTOR | REALSPACE | PHASE | ROTATION}]

This statement causes the observed and calculated structure factors
to be compared, and the proper scale factors that maximize the agree-
ment between the two data sets to be calculated (after consideration of
the most recent SET statement). Then the function value for the spec-
i�ed module will be determined. This function value will be written in
the �le whose name appears on the statement. An example where this
statement is used in a short loop in re�nement follows:

66 THE X-RAY CRYSTALLOGRAPHIC MODULE

$tntbin/rfactor <<$eof

INCLUDE $tntdata/formfactor.dat

INCLUDE your.tnt

INCLUDE scales.dat

INCLUDE shifted.cor

FUNCTION rfactor.dat

$eof

if ($status >< 0) then exit 1

The �le scales.dat contains the SET statement which reects the
scale factors used in the long loop. It is written whenever a GRADIENT
or CURVATURE command is executed.

GRADIENT <File name> -

[MODULE {RFACTOR | REALSPACE | PHASE}]

This statement causes the function value and gradient for the spec-
i�ed module to be calculated and written to the �le name on the input
statement. The scale factors needed in the short loops are written to
the �le scales.dat.

The GRADIENT command cannot be used with the ROTATION
module. The calculation of gradients in this module is more compli-
cated than the others. You need to read the \Rotation Function Re-
�nement Module" section of the \Other Modules in TNT" chapter.

Required for these calculations are the cell constants, the resolution
limits, space group symmetry, the Fo �le name, the coordinates of the
model, the formfactors, and the weight for this term. An example
follows:

$tntbin/rfactor <<$eof

INCLUDE $tntdata/formfactor.dat

INCLUDE your.tnt

INCLUDE init.cor

GRADIENT rfactor.dat

$eof

if ($status >< 0) then exit 1

Command Statements 67

NORMAL_MATRIX <File name> SOURCE <File Id> -

[MODULE <Name>] -

[BLUR <Value>] -

[{GRID 3(<Value>) | OVERSAMPLE <Value>}]

The NORMAL MATRIX command allows one to calculate the di-
agonal blocks (one block per atom) of the normal matrix for any kind
of crystallographic residual function. Using the procedure outlined in
(Tronrud, D.E., Acta Cryst (1999), A55, 700-703) Fourier coe�cients
can be calculated based upon the particulars of the residual function.
These coe�cients can be fed into Rfactor and the full set of diagonal
blocks calculated. This is usually much quicker than calculating the
diagonal blocks directly.

A detailed description of the Fourier coe�cients which you are re-
quired to calculate can be found in the \Creating Your Own Module"
chapter.

An example of script for using the NORMAL MATRIX command
is

$tntbin/rfactor << $eof

INCLUDE $tntdata/formfactor.dat

INCLUDE your.tnt

INCLUDE init.cor

FILE COEFS fo-fc.pak FORMAT PACKED

NORMAL_MATRIX rfactor.dat SOURCE COEFS MODULE MY_MODULE

$eof

if ($status >< 0) then exit 1

68 THE X-RAY CRYSTALLOGRAPHIC MODULE

PUNCH <File name> {MAP | DSN6 | HKL | PACKED | ATOMx} -

[TYPE {FO-FC | 2FO-FC | 3FO-2FC | IO-IC | -

(FO-FC)**2 | PHASE_GRD | REALSPACE_GRD | -

RFACTOR_GRD | ROTATION_GRD | PHASE_CRV | -

REALSPACE_CRV | RFACTOR_CRV | -

ROTATION_CRV | SWAP_PHASE}] -

[BLUR <Value>] [SCALE <Value>] -

[{GRID 3(<value>) | OVERSAMPLE <value>}] -

[{LAYOUT 6(<value>) | ASYMMETRIC}]

The PUNCH command in Rfactor is used to produce �les contain-
ing either maps or di�erence coe�cients. The modi�ers (Scale, Blur,
etc.) are described in the \Common Keywords" section of Chapter 3
(page 31).

The type of di�erence coe�cients (either directly written to disk or
used to calculate a map) is speci�ed with the TYPE modi�er. Most
of the coe�cient types are self-explanatory. The PHASE GRD, RE-
ALSPACE GRD, RFACTOR GRD, and ROTATION GRD coe�cient
types de�ne the maps used to calculate the gradients for these modules.
The curvatures for these modules can be calculated using the coe�cient
type with \ CRV" appended to their name. The SWAP PHASE coef-
�cient type allows the creation of coe�cients whose amplitude comes
from the FO �le while the phase comes from the FC �le.

The default �le is a 2Fo-Fc map oversampled by 2 and containing
a molecular volume layout.

A PUNCH statement must be preceded by a CELL statement, a
RESOLUTION statement, the symmetry operators, an FO statement,
some coordinates, and the form factors. The structure factors intro-
duced on a FC statement will be used in place of those calculated from
the coordinates if a FC statement is given.

If the SIGMA option has been set the coe�cients will be sigma
weighted. If a SIM statement has been given they will be Sim weighted.

Command Statements 69

Examples which produce an Fo-Fc and a 2Fo-Fc map are show be-
low. Additional examples are given on page 70.

PUNCH fo-fc.dsn6 DSN6 TYPE FO-FC

PUNCH 2fo-fc.dsn6 DSN6

REPORT {RFACTOR | SPACEGROUP}

The REPORT statement causes the program to write interesting
information to the log �le. There are two classes of information which
can be reported.

� RFACTOR

This statement causes the R-value between the two data sets to be
printed in the log �le. This R-value, along with other interesting
facts, are summarized for 10 equal-volume shells in reciprocal
space. If the FOM option is speci�ed then additional statistics
are printed which are weighted by the Figure of Merit found in
the Fo �le of structure factors. If the INTENSITY option is set
the statistics will be collected over intensity shells. The data will
be sigma weighted when the R-value is calculated if the SIGMA
option is set.

An example where RFACTOR is used to produce an R-value is

$tntbin/rfactor <<$eof

INCLUDE $refroot/tnt/doc/examples/phrm/tln_phrm.tnt

INCLUDE $refroot/tnt/doc/examples/phrm/phrm.cor

INCLUDE $tntdata/formfactor.dat

REPORT RFACTOR

$eof

if ($status >< 0) then exit 1

70 THE X-RAY CRYSTALLOGRAPHIC MODULE

� SPACEGROUP

This statement causes Rfactor to write interesting things about
the current space group to the log �le. The equivalent positions
will be listed. Then the point group symmetry and the lattice
class will be printed. Finally the centric zones and their phase
constraints are printed.

The only input required for the REPORT SPACEGROUP com-
mand is the symmetry operators.

$tntbin/rfactor <<$eof

INCLUDE $tntdata/symmetry/p6122.dat

REPORT SPACEGROUP

$eof

if ($status >< 0) then exit 1

Program Operation

Creating a Fo-Fo Map

The calculation of a Fo-Fo map requires three pieces of information
| the two sets of amplitudes and a set of phases. Since Rfactor works
with only two �les at a time the phases must be placed in the �le
containing the standard amplitudes (those being subtracted). If the
standard was solved using MIR phasing it is quite convenient to store
the MIR phases in the HKL �le with the measured amplitudes. When
this is the case it is quite simple to calculate a Fo-Fo map. One simply
has Rfactor calculate a \Fo-Fc" map where \Fo" is the derivative HKL
�le and \Fc" is the �le containing the standard amplitudes and MIR
phases.

If you wish to calculate a Fo-Fo map with phases calculated from
a model you must perform the additional step of appending the calcu-
lated phases to the standard amplitudes. A �le containing these mixed
coe�cients is produced with the SWAP PHASE coe�cient type. Once
this chimeric �le is created the Fo-Fo map is calculate as described
above.

Command Statements 71

When the PUNCH is issued with the TYPE SWAP PHASE mod-
i�er the resulting coe�cients consist of the amplitudes from the �le
de�ned on the FO statement while the phases are from the �le de�ned
on the FC �le.

Ksol is set to zero in either case. This must be done because the
disordered solvent contributes to both sets of reections. Ksol is only
used when comparing measured amplitudes to calculated ones.

Writing a Fo-Fo Map Phased with MIR Phases

$tntbin/rfactor <<$eof

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 2.3

INCLUDE $tntdata/symmetry/p6122.dat

INCLUDE native_model.cor ! Coordinates included

INCLUDE $tntdata/formfactor.dat ! to provide molecular

! volume.

FO modified_fobs.hkl ! Amplitudes of new protein

FC native_fobs.hkl ! Amplitudes and MIR phases

SET KSOL 0.0

PUNCH fo-fc.dsn6 DSN6 TYPE FO-FC OVERSAMPLE 4

$eof

if ($status >< 0) then exit 1

Writing a Fo-Fo Map Phased with Calculated Phases

$tntbin/rfactor <<$eof

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 2.3

INCLUDE $tntdata/symmetry/p6122.dat

FO native_fobs.hkl ! Amplitudes of standard

INCLUDE native_model.cor ! Source of phases

72 THE X-RAY CRYSTALLOGRAPHIC MODULE

INCLUDE $tntdata/formfactor.dat

PUNCH fobs_phicalc.hkl HKL TYPE SWAP_PHASE

FO modified_fobs.hkl ! Amplitude of new protein

FC fobs_phicalc.hkl ! Amplitudes and phases

SET KSOL 0.0

PUNCH fo-fo.dsn6 DSN6 TYPE FO-FC OVERSAMPLE 4

$eof

if ($status >< 0) then exit 1

#

rm fobs_phicalc.hkl

#

Chapter 7

Other Modules for TNT

This chapter describes three modules which are implemented in the
TNT re�nement package, but are not used as often as the GEOMETRY
and RFACTOR modules. These modules are:

PHASE: A module to restrain a model to observed phases
REALSPACE: A real space re�nement module
ROTATION: A rotation function re�nement module

The PHASE and REALSPACE modules require that phase infor-
mation be present in the observed HKL �le. This type of information
is usually only needed in the early stages of re�nement. Both of these
modules appear to be useful when the placement of a known struc-
ture in a new crystal is being attempted. Test have been run using
rigid body re�nement of such structures which show that each of these
modules is more powerful than the RFACTOR module.

It is not clear what relative weights should be given to each module
when simultaneous re�nement of several modules is performed. The
user will have to experiment in this area.

73

74 OTHER MODULES FOR TNT

Experimental Phase Re�nement Module

This module is to be used when one has a set of experimentally de-
termined phases and it is has been decided that the model should be
restrained to this information. The function minimized is

f(x) =
acentricX

hkl

1

(cos�1m(s))2
(�o(s)� �c(s;x))

2

Where s = (h k l) and m(s) is the �gure of merit of the phase.

It has been found that the gradient of the residual for this term
can be calculated using an algorithm similar to Agarwal's method for
calculating the gradient of the RFACTOR term. The same convolution
is performed but the coe�cients used to calculate the map (C(s)) are
described below.

Wt(s) =
1

(cos�1m(s))2

��(s) = �o(s)� �c(s)

C(s) =
Wt(s)

jFc(s)j��(s) exp i(�c(s) + �=2)

As you can see, it is not at all clear from the coe�cients what the
meaning of the map is. However, because the gradient of the phase
residual is calculated from this map using Agarwal's convolution, we
know that this map should behave like a normal di�erence map. There
will be positive or negative density centered on an atom if its occupancy
or temperature factor is in error and there will be an asymmetric, plus-
minus, peak if the position of the atom is incorrect. Because the sources
of noise in this kind of map are quite di�erent from those in the usual
di�erence maps, it could very well be pro�table to directly examine a
map of this form to aid in the interpretation of a model in the early
stages of structure determination.

Because of the similarity between the calculations required for this
module and those required for the RFACTORmodule there are no inde-
pendent programs for this module. The program Rfactor will calculate
all the required values.

Example Script 75

Problems

This module does not run as smoothly as the more traditional GEOM-
ETRY and RFACTOR modules. When it is used more short loops are
required than one would normally expect. Either there is some error
in its implementation or the (completely ignored) complications due
to the tight interrelationship between the amplitude and phase of each
reection is the cause. The module does improve the agreement of the
calculated and observed phases in spite of its problems.

Example Script

Following is an example script used in the long loop to calculate all
the required information for the PHASE and RFACTOR modules. The
particular example is from the re�nement of native Thermolysin, which
has very good MIR phases to 2.3�A resolution. The control �le tln.tnt
contains the cell constants, resolution limits, and the name of the ob-
served structure factor �le.

Long Loop Example

$tntbin/rfactor << $eof

INCLUDE $tntdata/formfactor.dat

INCLUDE tln.tnt

INCLUDE init.cor

CURVATURE phase.dat MODULE PHASE

CURVATURE rfactor.dat

$eof

if ($status >< 0) then exit 1

Short Loop Example

$tntbin/rfactor << $eof

INCLUDE $tntdata/formfactor.dat

76 OTHER MODULES FOR TNT

INCLUDE tln.tnt

INCLUDE scales.dat

INCLUDE shifted.cor

FUNCTION phase.dat MODULE PHASE

FUNCTION rfactor.dat

$eof

if ($status >< 0) then exit 1

Real Space Re�nement Module

Real space re�nement has had a long history of being successfully ap-
plied to the solution of protein structures. It is useful because it is the
simplest way to incorporate both the magnitude and phase of the ob-
served di�raction pattern. Because of the widespread use of reciprocal
space re�nement methods the real space re�nement method has been
overlooked in recent years.

The case where real space re�nement is indicated is when phases
have been determined, by some means, and a partial model has been
constructed. To produce a good phase combined map, the partial model
should be adjusted to �t the data as closely as possible. Re�nement
of a partial model in reciprocal space is di�cult because it is not clear
how much of each observed amplitude is supposed to be due to the
missing portion of the model. The problem is solved in real space be-
cause the Fourier synthesis which produced the \observed" map brings
the relevant density into the neighborhood of the atoms in the partial
model.

The function minimized with this module is

f(x) =
spaceX
r

(�o(r)� �c(r;x))
2

where the calculated electron density map is series terminated to match
the resolution limits of the di�raction data. Because the calculated
density far from any atom in the model is zero, all terms which depend
on density points far from the model are constant and do not a�ect the
gradient of the function. Therefore we only need to sum over the points

REAL SPACE REFINEMENT MODULE 77

that are close to the partial model. If one works out the equation for
the gradient of this function one will �nd that it can be calculated using
the Agarwal method of the RFACTOR module. The only di�erence is
in the coe�cients of the di�erence map. For this case the coe�cients
are those of the map which results from the inversion of the Fourier
coe�cients Fo exp i�o � Fc exp i�c.

The program Rfactor performs all the work speci�c to this mod-
ule. Run the program exactly as you would when running reciprocal
space re�nement but add a MODULE REALSPACE modi�er to the
command card.

Problems

While real space re�nement has a glorious history, it does not have
a very sound mathematical basis. The problem has to do with error
analysis. Least squares optimization has built into it the assumption
that every observation is independant and its uncertainty follows a
Normal distribution. When each density point in the map is considered
an \observation" they certainly are not independant { neigboring points
tend to have very similar densities.

The real errors of the observations follow a strange distribution.
The errors assoicated with the amplitudes are usually much smaller
than those associated with the phases. This asymmetry cannot be
expressed in real space.

Due to these, or other unknown problems, a cycle of re�nement with
the real space module usually requires more short loops than expected.

Example Script

Following is given an example script for calculating the function value,
gradient, and curvature of this module. It presumes that the control
�le tln.tnt contains the cell constants, space group symmetry, and the
name of the �le containing the observed structure factors and phases.
Since the phases are not reliable to the same resolution of the ampli-
tudes the example script truncates the resolution of the data to be

78 OTHER MODULES FOR TNT

considered. With a lower resolution limit a SET statement must be
given to ensure correct scaling.

Long Loop Example

$tntbin/rfactor << $eof

INCLUDE $tntdata/formfactor.dat

INCLUDE tln.tnt

RESOLUTION 20 3.0

SET KSOL 0.8

INCLUDE init.cor

CURVATURE realspace.dat MODULE REALSPACE

$eof

if ($status >< 0) then exit 1

Short Loop Example

$tntbin/rfactor << $eof

INCLUDE $tntdata/formfactor.dat

INCLUDE tln.tnt

RESOLUTION 20 3.0

INCLUDE scales.dat

INCLUDE shifted.cor

FUNCTION realspace.dat MODULE REALSPACE

$eof

if ($status >< 0) then exit 1

Rotation Function Re�nement Module

In Molecular Replacement the orientation of a fragment of known struc-
ture is determined by searching for a peak in the \Rotation Function".
Search methods are very useful for avoiding the problems of local min-
ima but are not particularly e�cient for getting the exact result. With
a solution \close enough" to the peak one can perform least-squares

ROTATION FUNCTION REFINEMENT MODULE 79

re�nement to home in on its center (Yates, T.O., Rini, J.M., Acta
Cryst (1990) A46, 352{359). This module allows the user to re�ne the
parameters of a model against a rotation function.

Re�ning with this module is more complicated than the other mod-
ules. The data required for the calculation of the function value, gra-
dient, and curvature are di�erent. In addition the space group of the
calculation changes from one part of the calculation to another. This
module is only implemented under the VMS operating system.

The function minimized with this module is

f(x) =
X
s

1

�2I (s)
(Io(s)� I 0c(s;x))

2

Minimizing this function means that the parameters of the model will
be varied to achieve a match between the Patterson coe�cients cal-
culated from the model and the observed Patterson coe�cients. This
function is relatively insensitive to the position of the molecule in the
unit cell so the model will not shift in space, it will only rotate. To
achieve the magnitude of shifts which are expected for this type of re-
�nement one will usually re�ne the model as a small number of rigid
groups.

There is a complication in the manner in which the space group
symmetry is included. Because we do not know the location of the
fragment in the unit cell we cannot calculate the Patterson coe�cients
for the whole unit cell. We must calculate the Patterson coe�cients for
the model orientated as it would be in each asymmetric unit, with its
center at the origin, and sum them. This calculation will eliminate any
cross vectors between asymmetric units which is good because we know
they are wrong. We then must calculate the gradient of the function
for each asymmetric unit in space group P1 and combine the gradients.

The actual procedure is simpler than this explanation sounds be-
cause the observed Patterson contains the Patterson group symmetry
so the gradient from each asymmetric unit will be equal. We only have
to calculate one of them.

An analysis of the function which must be minimized by this mod-
ule shows that the gradient can be calculated using a variation of the

80 OTHER MODULES FOR TNT

Agarwal method. The program Rfactor can be used to perform the cal-
culation, only it must be use an alternate set of di�erence coe�cients.
These coe�cients are

C(s) = 2
(Io(s)� I 0c(s))

�2I (s)
jFc(s)j exp i�c(s)

The calculation of the predicted scattering from your model is done
in two steps. First the Fourier transform of the model in P1 is cal-
culated. Then the Patterson coe�cients (I 0c(s)) are calculated in a
fashion which excludes contributions from the \cross vectors". These
coe�cients are calculated with the program Averager I. The Patterson
coe�cients are used to calculate the function value and are involved in
the gradient calculation.

The function value is calculated by comparing the observed Pat-
terson coe�cients with those calculated from the current model. This
must be done in the Patterson space group.

The curvature is calculated by comparing the Fobs's with the Fcalc's
of the model. Because the model, itself, is in space group P1 the Fobs's
must be expanded by its symmetry to P1 so that the reections can be
matched. You must have a copy of your Fobs which has been expanded
to space group P1. The atomic parameters are also required for cur-
vature calculation. This module is usually used to perform rigid body
re�nement. Since one should not use a minimization method which re-
quires the curvatures in rigid body re�nement it is not likely that you
will need to calculate curvatures.

The gradient is especially complicated to calculate because the coef-
�cients required (the C(s) above) depend upon the Fobs's, the Fcalc's,
and the Patterson coe�cients (I 0c(s)). The gradient coe�cients must be
calculated separately and ran back through Rfactor using the AGAR-
WAL command.

In a short loop all that need be done is to recalculate the Patterson
coe�cients of the new model, and run RFACTOR again.

ROTATION FUNCTION REFINEMENT MODULE 81

Command File Example

Following is given an example command �le for calculating the required
information for this module. The �le names used in this example are
those given in the TNT EXAMPLES: area for the Phosphoramidon in-
hibitor of thermolysin. Since the program Averager I is VMS speci�c
the example is a VMS command �le.

Usually one performs only rigid body re�nement with the rotation
function module. Therefore this example uses only the low resolution
data and does not calculate curvatures.

A complication of this module is that the space group of the calcu-
lations changes from place to place. One must be very careful to use
the crystal's space group, P1, and the Patterson space group at the
proper times. To make the space group clear the example does not use
a TNT control �le.

$!

$! SF's for the inhibitor-enzyme complex in P1.

$!

$ RUN TNT_UTIL:FOURIER

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 5

INCLUDE TNT_DATA:FORMFACTOR.DAT

INCLUDE INIT.COR

PUNCH TESTFC.HKL HKL

$!

$! Average the Patterson coefficients from our model over

$! the Patterson symmetry. This program will not handle

$! the center of symmetry operator in the Patterson

$! symmetry. It must be left out. This ommission does

$! not affect the result of the calculation.

$!

$ ASSIGN /USER TESTFC.HKL FOR010

$ ASSIGN /USER TESTFC_I_SYM.HKL FOR011

$ RUN TNT_FFT:AVERAGER_I

82 OTHER MODULES FOR TNT

94.1,94.1,131.4,90.,90.,120.,

x, y, z; x-y, x, z; -y, x-y, z;

-x, -y, z; y-x, -x, z; y, y-x, z;

x-y, -y, -z; -y, -x, -z; -x, y-x, -z;

y-x, y, -z; y, x, -z; x, x-y, -z.

5.0, 20.0

$!

$ RUN REFROOT:[TNT.RFACTOR]RFACTOR

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 5.0

INCLUDE TNT_SYMMETRY:P6MM.DAT

FO TNT_EXAMPLES:TLN_PHRM.HKL

FC TESTFC_I_SYM.HKL

SET KSOL 0.8

INCLUDE INIT.COR

INCLUDE TNT_DATA:FORMFACTOR.DAT

FUNCTION FUNCTION.DAT MODULE ROTATION

PUNCH COEFS.PAK PACKED TYPE ROTATION_GRD

$!

$ DELETE TESTFC_I_SYM.HKL;

$!

$! Expand the fourier coefficients in COEFS.PAK from

$! P6MM to space group P1. One can either use the center

$! of symmetry or not. It does not matter.

$!

$ ASSIGN/USER COEFS.PAK FOR010

$ ASSIGN/USER COEFS_P1.PAK FOR011

$ RUN TNT_FFT:EXPANDER

94.1,94.1,131.4,90.,90.,120.,

x, y, z; x-y, x, z; -y, x-y, z;

-x, -y, z; y-x, -x, z; y, y-x, z;

x-y, -y, -z; -y, -x, -z; -x, y-x, -z;

y-x, y, -z; y, x, -z; x, x-y, -z.

20.0,5.0,

X,Y,Z.

ROTATION FUNCTION REFINEMENT MODULE 83

$!

$ DELETE COEFS.PAK;

$!

$! Here we have to multiply COEFS_P1.PAK point for

$! point with TESTFC.HKL.

$!

$ RUN TNT_UTIL:FOURIER

FILE FC TESTFC.HKL FORMAT HKL

FILE ROTFUN COEFS_P1.PAK FORMAT PACKED

PUNCH ROTATION.PAK PACKED MULTIPLY FC ROTFUN

$!

$ DELETE COEFS_P1.PAK;, TESTFC.HKL;

$!

$! Calculate the gradient of the rotation function with

$! respect to our model. The model and therefore the

$! calculations are in P1.

$!

$ RUN REFROOT:[TNT.RFACTOR]RFACTOR

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 5.0

INCLUDE TNT_DATA:FORMFACTOR.DAT

INCLUDE INIT.COR

FILE COEFS ROTATION.PAK FORMAT PACKED

AGARWAL GRADIENT.DAT MODULE ROTATION SOURCE COEFS

$!

$ DELETE ROTATION.PAK;

$!

$ COPY FUNCTION.DAT,GRADIENT.DAT ROTATION.DAT

$ DELETE FUNCTION.DAT;, GRADIENT.DAT;

$!

$! ***** End of modules and into control program ****

$!

$ RUN REFROOT:[TNT.SHIFT]SHIFT

INCLUDE ROTATION.DAT

INCLUDE OLDDIR.DAT

INCLUDE INIT.COR

84 OTHER MODULES FOR TNT

COMBINE XYZ *

CONSTANT B

CONSTANT OCC

$!

$! More clean up.

$!

$ DELETE OLDDIR.DAT;, ROTATION.DAT;

$!

This is the command �le for the short loops of the same cycle.

$!

$! SF's for the inhibitor-enzyme complex in P1.

$!

$ RUN TNT_UTIL:FOURIER

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 5

INCLUDE TNT_DATA:FORMFACTOR.DAT

INCLUDE SHIFTED.COR

PUNCH TESTFC.HKL HKL

$!

$! Average the Patterson coefficients from our model over

$! the Patterson symmetry. This program will not handle

$! the center of symmetry operator in the Patterson

$! symmetry. It must be left out. This ommission does

$! not affect the result of the calculation.

$!

$ ASSIGN /USER TESTFC.HKL FOR010

$ ASSIGN /USER TESTFC_I_SYM.HKL FOR011

$ RUN TNT_FFT:AVERAGER_I

94.1,94.1,131.4,90.,90.,120.,

x, y, z; x-y, x, z; -y, x-y, z;

-x, -y, z; y-x, -x, z; y, y-x, z;

x-y, -y, -z; -y, -x, -z; -x, y-x, -z;

y-x, y, -z; y, x, -z; x, x-y, -z.

ROTATION FUNCTION REFINEMENT MODULE 85

5.0, 20.0

$!

$ DELETE TESTFC.HKL;

$!

$ RUN REFROOT:[TNT.RFACTOR]RFACTOR

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 5.0

INCLUDE TNT_SYMMETRY:P6MM.DAT

FO TNT_EXAMPLES:TLN_PHRM.HKL

FC TESTFC_I_SYM.HKL

INCLUDE SCALES.DAT

FUNCTION ROTATION.DAT MODULE ROTATION

$!

$ DELETE TESTFC_I_SYM.HKL;

$!

$! Get rid of the old SHIFTED.COR.

$!

$ DELETE SHIFTED.COR;

$!

$! Now move the atoms as directed.

$!

$ ASSIGN/USER SHIFT.OUT SYS$OUTPUT

$ RUN REFROOT:[TNT.SHIFT]SHIFT

INCLUDE STPFIL.DAT

INCLUDE ROTATION.DAT

INCLUDE INIT.COR

INCLUDE NEWDIR.DAT

$!

$ TYPE SHIFT.OUT

$!

$ DELETE ROTATION.DAT;

$ PURGE STPFIL.DAT

86 OTHER MODULES FOR TNT

Chapter 8

Creating Your Own Module

To allow TNT to restrain a macromolecular model to a new type of
observation you will need to write a program. You will have to de�ne
the precise function you plan to minimize. Your program will have to
be able to calculate the value of this function and its �rst derivative
with respect to each parameter of the model, given any coordinate set.
To allow yourself the bene�ts of the preconditioned conjugate gradient
method the program should also be able to calculate the second deriva-
tives. TNT only uses atomic block diagonal elements of the normal
matrix. The list of required second derivatives consists of a symmetric
5x5 block for each atom.

Passing Information to TNT

To be compatible with the TNT programs your program will need to
read and write standard TNT �les. The format of the coordinate and
sequence �les have been de�ned in the chapter \Shared I/O Properties"
chapter and Appendix A of this manual and \TNT Sequence File"
chapter of the TNT Users' Guide. The only unfamiliar keywords will
be those used to pass the function value and derivatives to Shift.

Six keywords are provided to allow information to be passed from
the various modules to the control program. They are called FUNC-

87

88 CREATING YOUR OWN MODULE

VAL, DRVx, GRADx, CRVC, CRVAC, and CRVBC. All of these state-
ments are free-format like most everything else in TNT. Remember the
de�nition of <Atom designator> is

<Atom name> <Residue name> <Chain name>

CRVC <Module name> <Term curvature> <Atom designator>

< Term curvature >:==

< @2f=@X2 >< @2f=@Y 2 >< @2f=@Z2 >< @2f=@B2 >< @2f=@Occ2 >

This statement is used to pass the curvature of each parameter for
the atom mentioned to the control program. Curvatures are always
be speci�ed in the TNT orthogonal coordinate system. If you do not
calculate these values, do not write these statements and the minimizer
will revert to a noncurvature minimization method.

CRVAC <Module name> <Term A curvature> <Atom designator>

< Term A curvature >:==

< @2f=@X@Y >< @2f=@Y @Z >< @2f=@Z@B > �
< @2f=@B@Occ >< @2f=@X@Z >

This statement is used to pass some o�-diagonal elements of each
atom's curvature matrix for the atom mentioned to the control pro-
gram. Curvatures are always be speci�ed in the TNT orthogonal coor-
dinate system. If you do not calculate these values, do not write these
statements and the minimizer will revert to a pure diagonal approxi-
mation to the Normal matrix.

PASSING INFORMATION TO TNT 89

CRVBC <Module name> <Term B curvature> <Atom designator>

< Term B curvature >:==

< @2f=@Y @B >< @2f=@Z@Occ >< @2f=@X@B > �
< @2f=@Y @Occ >< @2f=@X@Occ >

This statement is used to pass some o�-diagonal elements of each
atom's curvature matrix for the atom mentioned to the control pro-
gram. Curvatures are always be speci�ed in the TNT orthogonal coor-
dinate system. If you do not calculate these values, do not write these
statements and the minimizer will revert to a pure diagonal approxi-
mation to the Normal matrix.

DRV <Module name> <Term gradient> <Atom designator>

DRVC <Module name> <Term gradient> <Atom designator>

DRVG <Module name> <Term gradient> <Atom designator>

< Term gradient >:==

< @f=@X >< @f=@Y >< @f=@Z >< @f=@B >< @f=@Occ >

These statements are used by the various modules to pass the term's
derivatives for each atom in the structure to the control program. The
derivatives for every atom must be supplied by every module being used
in TNT.

FUNCVAL <Module name> <Value>

One FUNCVAL statement is generated by each module and passed
to the control program. This statement contains the name of the mod-
ule in question and the present value of the function which that module
deals with.

90 CREATING YOUR OWN MODULE

Using TNT to Calculate Derivatives

While the calculation of the gradient and curvature usually is not too
di�cult for many restraint types when di�raction gets involved these
calculations can become di�cult to code in an e�cient manner. TNT
contains tools which can be used to speed these calculations and lessen
the amount of work you have to do to implement your ideas.

The Agarwal method of calculating gradients of the usual least-
squares restraint is generalizable to any restraints which are a function
of amplitudes and phases. In this method the gradient of a residual
function is calculated by generating Fourier coe�cients which depend
upon the form of the residual, and processing the corresponding map
in a general fashion. For the calculation of the gradient the coe�cients
are given to the AGARWAL command in Rfactor. The diagonal of the
Normal matrix is calculated in a similar fashion by passing di�erent
coe�cients to the NORMAL MATRIX command.

The Fourier coe�cients required to calculate the gradient of a resid-
ual of the form

f =
X
s

G(s) (8.1)

is

C(s) = �1

2

@G(s)

@jFc(s)j + i
1

jFc(s)j
@G(s)

@�c(s)

!
exp i�c(s): (8.2)

The coe�cients required to calculate the curvature of a residual is
much more complicated. The principle component can be calculated
by passing

C(s) =
1

2

@2G(s)

@jFc(s)j2 � i
1

jFc(s)j2
@G(s)

@�c(s)

!
(8.3)

to the NORMAL MATRIX command.

Chapter 9

Re�nement Control Program
(Shift)

The program Shift performs all the calculations required to oversee the
minimization of the function. It can determine the optimum shift to ap-
ply to the parameters of the model, while imposing various constraints
de�ned by the user. The model, for example, can be broken into one
or more groups which move as rigid bodies. Also particular parameters
can be held �xed.

Shift always works with the starting coordinate set (init.cor) and
a current fraction of shift, called the stepsize. When the stepsize is equal
to zero (i.e. no shift has been applied) the program works in \long loop"
mode. Conversely, when the stepsize is non-zero the program performs
the \short loop" calculations.

In either case, the program evaluates all available information and
determines its best guess of the next stepsize which should be tried.
It then generates a new trial set of coordinates (shifted.cor) by ap-
plying this guess. The only �les required to do this task are the ini-
tial coordinates (init.cor), the parameter shift vector (newdir.dat),
the function value for the current stepsize (usually rfactor.dat and
geometry.dat), and the history of the previous guesses (stpfil.dat).

In a short loop that is all that is done. In the long loop the direction
of shift must �rst be determined. The calculation of the parameter shift

91

92 REFINEMENT CONTROL PROGRAM (SHIFT)

Curvature
olddir.dat Absent Present

Absent Steepest Descent Gradient / Curvature
Present Conjugate Gradient Preconditioned

Conjugate Gradient

Table 9.1: Choice Table for Minimization Method

vector requires, in the simplest case, the �rst derivatives of the func-
tion being minimized. The inclusion of the second derivatives improves
the quality of the shift vector considerably. The shift vector must be
modi�ed to ensure that the user's constraints will not be violated.

Shift can use four di�erent methods to calculate the parameter shift
vector. These methods are discussed in detail in the chapter \Theory of
TNT Re�nement" (page 7). The program is never told which method
to use. It simply looks at the information which has been given to
it and uses the best method it can. The optional data are the old
shift vector (olddir.dat) and the second derivatives of the function.
Table 9.1 shows the rules used to determine the method.

93

Options

Shift recognizes two options. They can be set with the OPTION state-
ment described in the \Standard TNT Data Statements" section on
page 27. As an example, the activation of the VERBOSE option would
require the statement

OPTION SET VERBOSE

� MOSES

The Moses option is used to modify the behaviour of solvent
atoms in rigid-body re�nement. Normally any atoms not specif-
ically listed on COMBINE statements are left as free atoms. If
you model contains solvent atoms and several COMBINE state-
ments you would have to assign each solvent atom to a partic-
ular statement, which can be time-consuming and error prone.
When the Moses option is SET, the waters are \split" between
the COMBINE statements by assigning each atom to the COM-
BINE statement which contains its nearest neighbor. This option
does not a�ect only solvent, all atoms are assigned to the closest
COMBINE statement resulting in the restriction of all free atoms.

� VERBOSE

The Verbose option causes the program to write additional infor-
mation to the log �le about the choices it makes. This includes
a summary of the function value for each module and the actual
parameters of the curve being locally �t to the overall function.

94 REFINEMENT CONTROL PROGRAM (SHIFT)

Unique Input Statements

Shift has several unique input statements which are only used in the
passing of information from the programs performing the function value
and derivative calculations. These statements are discussed in the
\Writing Your Own Module" chapter (page 87).

In addition, it understands:

MAXSHIFT <Parameter code> <RMS limit>

The MAXSHIFT statement allows a limit to be placed on the size of
any shift for any atom. While the RANGE statement limits the allowed
values of a parameter, MAXSHIFT limits the allowed range of shifts
which may be applied. <Parameter code> is either XYZ, B, or OCC
(ALL is not allowed). The <RMS limit> times the root-mean-square
of all shifts gives the upper limit for the size of any particular shift. If
a shift is greater than this limit it is clipped to that limit.

(The r.m.s. shift is determined in a robust fashion; all shifts greater
than 4 times the r.m.s. are ignored.)

MAXSHIFT is only useful when using steepest descent or conjugate
gradient. When the shifts are not scaled by the curvatures some param-
eters will be vastly overshifted, especially temperature factors of heavy
atoms. The MAXSHIFT statement causes the resulting oscillations to
damp much quicker. When using a minimization method which utilizes
curvature, such as preconditioned conjugate gradient there is no need
to use this statement.

RMSTEP <Parameter code> <RMS shift>

The RMSTEP statement gives Shift an initial amount of shift to
be applied. The parameter code identi�es whether a RMS coordinate
(XYZ), B factor (B), or occupancy (OCC) is being de�ned. The short
loops will re�ne this number to �nd the best value. Because this number
is re�ned its choice is not critical but values 1 1/2 to 2 times larger than

PARAMETER EDITING STATEMENTS 95

the expected �nal value seem to work best. Default values exist for the
RMSTEP statement so that in a long loop it need not to be given.

RMSTEP is ignored whenever the Gradient/Curvature or Precon-
ditioned Conjugate Gradient methods are used. In both of these cases
the curvature is used to determine the initial stepsize.

Parameter Editing Statements

COMBINE <Parameter code> N(<Atom code>)

This statement creates a subset of the structure that will be treated
as a rigid body. The positional shifts of each atom in this class are
combined so that the relative positions of the atoms within the group
are una�ected by the shifts to be applied. Several ridge bodies can
be re�ned simultaneously by entering several COMBINE statements.
Each COMBINE statement generates a single rigid body.

If non-positional parameters are combined, the shift applied to every
atom is the average of the shift that would have been applied to each
atom. Therefore if all of the atoms in the subset began with the same
value then they would maintain values equal to each other, even though
the particular value would change.

When positional parameters are combined the group is allowed to
rotate and translate as a unit.

The details of this statement are described in the \TNT Control
File" chapter of the \TNT Users' Guide".

CONSTANT <Parameter code> N(<Atom code>)

This statement sets the shifts for a speci�ed subset of the structure
to zero causing the speci�ed parameters to remain constant.

The details of this statement are described in the \TNT Control
File" chapter of the \TNT Users' Guide".

96 REFINEMENT CONTROL PROGRAM (SHIFT)

Program Operation

This program is quite simple to run. All you have to do is provide the
information from each module, and describe any modi�cations to the
shifts you wish to make. The most common type of re�nement uses
the crystallographic and stereochemistry modules. Usually we do not
have high enough resolution to determine the occupancies of the atoms
in the molecule. The occupancies will have to be held �xed. The data
the program needs in the long loop is:

$tntbin/shift << $eof

INCLUDE geometry.dat

INCLUDE rfactor.dat

INCLUDE init.cor

INCLUDE olddir.dat

CONSTANT OCC

$eof

if ($status >< 0) then exit 1

Usually the CONSTANT, COMBINE, and other parameter edit-
ing statements are placed in the TNT control �le. The CONSTANT
statement here is placed in the script for illustrative purposes only.

The information from each module is contained in rfactor.dat

and geometry.dat. These �les must contain, at least, the function
value and gradient of their respective terms. If the �les also contain
the curvature Shift will be able to use the more powerful methods of
function minimization.

The initial coordinates are contained in the �le init.cor. The shift
vector, or direction �le, is contained in olddir.dat. This �le is the shift
applied in the last cycle. During the �rst cycle of a series there will
not be an olddir.dat, therefore you should ensure that an empty one
exists. Its presence will keep Shift from reporting a \�le not found"
error message.

The occupancies of all atoms are held �xed. Because this is the only
CONSTANT statement all the positions and temperature factors will
be varied.

PROGRAM OPERATION 97

The input to SHIFT during a short loop in this same cycle looks
like:

$tntbin/shift << $eof

INCLUDE stpfil.dat

INCLUDE newdir.dat

INCLUDE init.cor

INCLUDE geometry.dat

INCLUDE rfactor.dat

$eof

if ($status >< 0) then exit 1

Note that stpfil.dat and newdir.dat are now included. stpfil.dat
contains the history of this cycle while newdir.dat contains the current
shift vector. olddir.dat is no longer needed. It should be deleted at
the end of the long loop.

Again init.cor is read. Shift will always work relative to the initial
coordinates.

The TNT control �le is not required in the short loops.

Information from the individual modules is again passed in geo-

metry.dat and rfactor.dat. However in the short loops these �les
need only contain the function values.

The CONSTANT statements should not be reentered in the short
loops because the knowledge that they had been entered in the long
loop has been stored in newdir.dat.

98 REFINEMENT CONTROL PROGRAM (SHIFT)

Chapter 10

Re�nement Package Utilities

There are several utility programs distributed with this re�nement
package. They are of variable quality and usefulness and not all are
described in this document. The programs described are:

Convert A coordinate format conversion program
Dscreen A derivative �le screening program
Fourier A Fourier transformation utility
Gather map Calculates ncs averaged maps
Overlay Superimposes molecules or subsets on each other
Solvent Calculates solvent envelopes and attened maps

99

100 REFINEMENT PACKAGE UTILITIES

CONVERT

Coordinate Conversion Program

This program is used to convert coordinate �les both to and from
the standard formats of this re�nement package. It can perform any of
the conversions in the following table.

From To

ATOM ATOM
ATOMC ATOMC
ATOMG ATOMG
SEQUENCE SEQUENCE
DIAMOND DIAMOND
DSN2 DSN2
HENDRICKSON HENDRICKSON
PDB PDB

AMSOM

As shown in the table Convert can produce a sequence �le given
a DIAMOND, DSN2, HENDRICKSON, or PDB format �le. The se-
quence is inferred by a method that involves the CATEGORY, DAN-
GLING, and CONNECT statements. The sequence �le produced will
have to be edited to handle unusual circumstances. This program does
not change atom names to adapt to di�erent naming conventions. How-
ever a �le containing CHANGE commands which will correct most
atom type problems is supplied. It is named $tntdata/pdb fixup.dat

This program has several additional functions. It can alter the
name of a variety of objects with the RENAME command (e.g. atoms,
residues, chains). It can change the type of an atom, residue, or chain
with the CHANGE command. It can add a particular value to all the
temperature factors or occupancies of the model or add a vector to the
positional parameters with the ADD command. And it can add a ran-
dom quantity with speci�ed variance to any of these parameters with
the JIGGLE command.

CONVERT: A Coordinate Conversion Program 101

Conversion Limitations

There are a number of fundamental problems with format conversions
of coordinate �les. These problems arise because concepts used in one
format may not be de�ned in another.

Residue Names

The most important of these di�culties is that in some formats, such
as the PDB format, residues are identi�ed with numbers, while TNT's
format uses the full alphanumeric character set in residue names. While
the conversion from PDB format to ATOMC is quite simple in this
respect the reverse operation is not clearly de�ned. The solution used
by Convert is to simply write the original residue names in the PDB
�le. This choice easily leads to illegal PDB �les.

Atom Types

Another common problem with coordinate �le format conversion in-
volves atom types. TNT de�nes atom types with four letter names.
PDB format uses the one or two letter standard element abbreviation.
This means that a PDB �le cannot de�ne the ionic state of an atom,
which is important when calculating the X-ray scattering from that
atom.

The �rst two columns in the atom name �eld are reserved for the
elemental type in PDB format. Knowing this convention usually allows
Convert to at least identify the element correctly. However, the PDB
does not follow its own rules. The standard atom labels chosen for
a number of cofactors do not begin with the element symbol for that
atom. For instance, the C40 atom in the ribose ring in ATP is labeled
AC4*. Convert will misidentify this atom, and almost all the other
atoms in an ATP, as having the elemental type \A". To correct the
problem you will need to INCLUDE the �le $tntdata/pdb fixup.dat

between the PDB and PUNCH commands.

Diamond and DSN2 formats use integer codes to identify atom
types. Unfortunately the de�nition of the formats do not specify an

102 REFINEMENT PACKAGE UTILITIES

atom type code for any atom types other than carbon, nitrogen, oxy-
gen, and sulfur. Beyond those atom types your have to create your own
standard. Convert allows you to specify the atom type code for each
atom type.

For the �le formats Diamond and DSN2 you can specify, on the end
of the PUNCH command, a table de�ning the integer code for each
atom type found in your model. When reading back the Diamond �le
you must include this same table of conversion values on the DIAMOND
statement. Convert hides this information in the DSN2 format so you
are not required to reenter the table when reading back a DSN2 �le.

Multiple Chains

A problem which arises with DSN2 format is that there is no method for
including multiple chains in the �le. When Convert writes a multiple
chain model to DSN2 format it prepends the �rst letter of the chain
name to each residue's name. Therefore residue \ALPHAj1" becomes
\A1" in the DSN2 �le. Convert hides the information that \A" is
denoting chain \ALPHA" in the DSN2 �le so that the proper chain
name can be restored when converting back to ATOMC format.

The PDB �le format allows no more than a single letter to identify
a chain. TNT will allow up to four letters but since your model will
have to be convertible to PDB format you should stick to single letters.

Chain Breaks and Extra Links

Often a peptide chain in a model, and sometimes in reality, is broken.
Residue 123 might directly follow residue 120 in the coordinate �le
without a peptide bond connecting the two. Usually, in PDB, Diamond,
and DSN2 formats, it is implicitly assumed that each residue is linked
to the next. When this does not happen Convert will err and link them.
When you are �rst creating a sequence �le you should be aware of the
breaks in the main chain of your model and edit the sequence �le to
include this information.

CONVERT: Inferring the Sequence 103

Non-TNT formats do not include ability to de�ne other kinds of
links between residues. If you have non-standard crosslinks in your
molecule you will have to edit the sequence �le for these as well.

DNA Connectivity

TNT can use the statements described in the next section to generate
a nearly correct sequence �le for DNA. There are some problems which
must be manually corrected.

The �rst problem is that the TNT geometry library requires that
the �rst two bases in DNA be connected via the d5'END link instead
of the normal dSUGPHOS link. If this correction in not made TNT
will complain about the absence of some atoms which are not supposed
to be present. The progress of re�nement will not be a�ected.

The second problem is that TNT cannot distinguish between DNA
and RNA. The bases in DNA are connected using the dSUGPHOS link
in the sequence �le while RNA bases should be connected using the
SUGPHOS link. If your model contains RNA you will have to edit the
sequence �le.

Keywords for Inferring the Sequence

These statements are used to de�ne the assumptions about the con-
nectivity implicit in other �le formats. They are required for Convert
to construct a TNT sequence �le. A �le containing the most common
assumptions is supplied with the TNT distribution. This �le is named
$tntdata/connect.dat. It should be INCLUDEd prior to the inclu-
sion of any foreign coordinate �le, such as a PDB or DSN2 �le, if a
sequence �le is to be PUNCHED. (This is done in the shell command
from pdb.)

The basic idea is that collections of residue types can be treated
identically. A collection of these residue types is de�ned on a CAT-
EGORY statement. For example, in terms of connectivity all amino
acids are considered the same. Therefore we de�ne a category of

104 REFINEMENT PACKAGE UTILITIES

AMINOACID to consist of the twenty amino acid types (some types
have synonymous names) with the statement

CATEGORY AMINOACID VAL, GLY, ALA, SER, LEU, -

ILE, PHE, TRP, PRO, CPR, -

MET, THR, CYS, CYH, TYR, -

ASN, GLN, ASP, GLU, LYS, -

ARG, HIS, MSE

We then specify what type of link should be generated when an
AMINOACID follows another AMINOACID with a CONNECT state-
ment. This statement looks like

CONNECT AMINOACID AMINOACID PEPTIDE

If an amino acid follows an amino acid they should be connected with
a PEPTIDE linkage.

Finally we de�ne with a DANGLING statement what to do when
a residue of a particular category is followed by nothing. A dangling
amino acid should be connected to an empty residue with a BREAK
linkage. This requirement is translated to

DANGLING AMINOACID BREAK

CATEGORY <Category name> N(<Residue type>)

This statement is used to place a group of residue types into a
category. All the residues in a category will be treated the same when
the connectivity of a molecule is deduced.

CATEGORY BASE ADE, GUA, CYT, THY

This example de�nes the residue types ADE, GUA, CYT, and THY
to be in the category BASE.

CONVERT: Inferring the Sequence 105

CONNECT <Category name> <Category name> <Linkage type>

The CONNECT statement says that whenever a residue of the �rst
category is followed by one of the second, they are to be linked with
the given linkage type. This mechanism will not add any secondary
linkages, like disul�de bonds, but can build a basic peptide backbone.

CONNECT BASE BASE dSUGARPHOS

This example says that when a BASE follows a BASE they should
be joined by a dSUGARPHOS linkage. Of course, you would want
to say something di�erent if your molecule contained RNA instead of
DNA.

DANGLING <Category name> <Linkage type>

The DANGLING statement is used when the residues of a particular
require a link even when they are not followed by anything. Both amino
acids and nucleic acids have this requirement. When the sequence �le
is being created and a dangling residue is discovered a dummy residue
is manufactured and the residue is linked to the dummy via the linkage
type given on the DANGLING statement.

DANGLING BASE d3'END

This example says that the terminal BASE should be connected to
a dummy residue with a d3'END linkage.

106 REFINEMENT PACKAGE UTILITIES

Unique Keywords for Specifying Data

DIAMOND <File name> N(<Atom type code> <Atom type name>)

This statement allows the program to read the atomic coordinates
from a Diamond format �le. The �le name of the Diamond �le is the
�rst item after the keyword. It is followed by a list of translation pairs.
These pairs describe how the integer atom types of the Diamond �le
should map onto the atom type names that this package uses to identify
atoms. The pairs (1 C), (2 N), (3 O), (4 S), and (5 P) are built into the
program. If there are no other atom types in your structure and the
above translation pairs are correct then you don't need to worry about
atom type codes at all. Just give the �le name and nothing else.

A CELL statement must precede a DIAMOND statement. If a
sequence �le is desired the �le $tntdata/connect.dat must be IN-
CLUDEd before this statement.

The coordinate system of the atoms in the Diamond �le is assumed
to be crystallographic �Angstroms (fractional times the cell edges). No
other coordinate system of DIAMOND �le can be read or written.

Here are some examples:

DIAMOND gewl.rdi

DIAMOND phase5r.rdi 12 MG++

The �rst example tells the program to read the �le gewl.rdi and
to use only the normal translation table. The second statement tells
the program to read the �le phase5r.rdi and to add another atom
type to the translation table. The pair of values says that atom type
12 corresponds to the atom type MG++.

DSN2 <File name> N(<Atom type code> <Atom type name>)

This statement allows the program to read the atomic coordinates
from a Frodo DSN2 format �le. The �le name of the DSN2 �le is the
�rst item after the keyword. It is followed by a list of translation pairs.

CONVERT: Unique Keywords 107

These pairs describe how the integer atom types of the DSN2 �le should
map onto the atom type names that TNT uses. The pairs (1 C), (2
N), (3 O), (4 S), and (5 P) are built into the program. If there are no
other atom types in your structure and the above translation pairs are
correct then you don't need to worry about atom type codes. Just give
the �le name and nothing else.

If the DSN2 �le was created by TNT the �le will contain all the
information required to translate the integer atom codes into TNT style
atom type names. You do not need to enter any additional information.

If the DSN2 �le does not contain cell constant information the DSN2
statement must be preceded by a CELL statement. If a sequence �le
is desired the �le $tntdata/connect.dat must be INCLUDEd before
this statement.

Here are some examples:

DSN2 gewl.dsn2

DSN2 phase5r.dsn2 12 MG++

The �rst example tells the program to read the �le gewl.dsn2 and
to use only the normal translation table. The second line tells the
program to read the �le phase5r.dsn2 and to add an additional atom
type. The entry says that atom type 12 corresponds to the atom type
MG++.

HENDRICKSON <File name>

This statement causes the program to read the named �le into the
internal data base. This allows the input of Hendrickson format coor-
dinates. A CELL statement is required in all cases and $tntdata/con-

nect.dat should be INCLUDEd if a sequence �le is desired. The name
of the atom type of each atom is assumed to be the �rst character of the
atom name. If there are atoms in the structure whose type cannot be
determined by this method you will either have to use the RENAME
command in your script or edit the �le.

108 REFINEMENT PACKAGE UTILITIES

PDB <File name>

This statement causes the program to read the named �le into the
internal data base. This allows the input of Protein Data Bank format
coordinates. Cell constant information is read from the �le so a CELL
statement not is required. The �le $tntdata/connect.dat must be IN-
CLUDEd before the PDB statement if a sequence �le is desired. The
elemental type of each atom is determined from the �rst two columns
of the atom name �eld. While this method usually gives the correct
elemental type it cannot give the ionic state of the atom. This infor-
mation will have to be given either using the RENAME command or
manually editing the �nal coordinate �le.

While $tntdata/connect.dat should be INCLUDEd prior to the
PDB statement it is usually wise to INCLUDE the �le $tntdata/pdb-
fixup.dat afterwards. This �le will correct a wide range of possible
problems, including the correction of most elemental types.

Convert will automatically change the C-termini from PDB style
to TNT style. It will move the extra oxygen atom into a residue of
its own and link it with a CTERM linkage. Convert will also read the
disul�des o� the SSBRIDGE statements and include then in the new
sequence �le.

Convert will not properly create a sequence �le for DNA or RNA,
although it will be close. See Page 103 for details.

CONVERT: Command Statements 109

Command Statements

ADD {XYZ | B | OCC} {<Value> | <Value> <Value> <Value>}

This command is used to add a constant to a particular type of
parameter for each atom in the structure. When the XYZ parameters
are to be a�ected three values must be given to de�ne the translation
vector. When either temperature factors (B's) or occupancies (OCC's)
are speci�ed a single number is given. In any case the number read
from the statement is added to each parameter of the indicated type
in the model. For instance this command may be used to change the
average temperature factor of a model.

No B factor or occupancy can be moved outside the values imposed
by the most recent RANGE statement.

This operation would be performed with a statement looking like

ADD B 5.0

JIGGLE {XYZ | B | OCC} <RMS value>

This command adds a random value to the parameter class speci�ed.
The amount of distortion is normally distributed with the r.m.s. value
speci�ed by the user. The values allowed for B or OCC parameters
are be restricted to a particular range by the most recent RANGE
statement. By default B factors will lie between 1.0 and 100.0 while
OCC parameters will be restricted to values between 0.0 and 1.0.

Some example statements are given here.

JIGGLE XYZ 1.0

JIGGLE B 5.0

The �rst example mangles the XYZ parameters of the model with
an r.m.s. value of 1.0. The second example adds an r.m.s. variation of
5.0 to the B factors.

110 REFINEMENT PACKAGE UTILITIES

PUNCH <File name> {ATOM | ATOMC | ATOMG | SEQUENCE | CELL |

AMSOM | PDB | DIAMOND |

DSN2 | HENDRICKSON} -

N(<Atom type code> <Atom type name>)

This command writes out all atoms presently known to the program
to the named �le in the format speci�ed.

A CELL statement is required to convert to Diamond, DSN2, Hen-
drickson, or PDB formats. DSN2 �le conversion also requires the sym-
metry operators of the space group.

If Amsom, PDB, Diamond, DSN2, or Hendrickson format is de-
sired, the sequence �le for the structure must have been supplied. If
a SEQUENCE �le is desired, a sequence must be entered, either by
giving a sequence �le (the null operation), or a PDB, Diamond, DSN2,
or Hendrickson formatted �le.

One would want to PUNCH a �le of CELL format when converting
from a PDB format �le. The cell constants are usually stored in the
PDB �le. One can PUNCH these values in a �le which contains only
a CELL statement. This �le can be INCLUDEd when other TNT
programs read the new coordinate �le.

Here are some examples.

PUNCH test.pdb PDB

PUNCH test.dsn2 DSN2 20 CA++ 30 ZN++

PUNCH test.rdi DIAMOND 20 CA++ 30 ZN++

The coordinate system of the Diamond �le produced is crystallo-
graphic �Angstroms (fractional times cell edges). This coordinate system
is the only one that can be produced in a Diamond �le with Convert.

Program Operation

The most common operations performed by Convert are to convert to
and from PDB format, and to and from Frodo's DSN2 format. An
example of each operation is given below.

CONVERT: Command Statements 111

Converting PDB to ATOMC format

$tntbin/convert << $eof

INCLUDE $tntdata/connect.dat

PDB pdb1tmn.ent

INCLUDE $tntdata/pdb_fixup.dat

PUNCH 1tmn.cor ATOMC

PUNCH 1tmn.seq SEQUENCE

$eof

if ($status >< 0) then exit 1

This example reads the PDB �le named pdb1tmn.ent and produces the
TNT coordinate �le 1tmn.cor and the sequence �le 1tmn.seq. If you do
not need a sequence �le simply delete the second PUNCH command.
This example will work for any PDB �le. Since the shell command
from pdb can be used to perform this conversion you do not need to
write one of your own.

ATOMC to PDB format

$tntbin/convert << $eof

CELL 94.1 94.1 131.4 90 90 120

INCLUDE 1tmn.cor

INCLUDE 1tmn.seq

PUNCH 1tmn.pdb PDB

$eof

if ($status >< 0) then exit 1

This example writes the coordinates and sequence information stored
in 1tmn.cor and 1tmn.seq to the PDB �le 1tmn.pdb. The to pdb shell
command performs this function.

112 REFINEMENT PACKAGE UTILITIES

Converting DSN2 to ATOMC format

$tntbin/convert << $eof

INCLUDE $tntdata/connect.dat

DSN2 tln_phs5r.dsn2 15 P 17 CL- 30 ZN++ 20 CA++

PUNCH tln_phs5r.cor ATOMC

PUNCH tln_phs5r.seq SEQUENCE

$eof

if ($status >< 0) then exit 1

This example reads the DSN2 �le named tln phs5r.dsn2 and pro-
duces the TNT coordinate �le tln phs5r.cor and the sequence �le
tln phs5r.seq. (The atom type translation table is unneeded if the
DSN2 �le was produced by Convert.) If you do not need a sequence �le
simply delete the second PUNCH command. This example will work
for any DSN2 �le. Since the shell command from dsn2 can be used
to perform this conversion you do not need to write one of your own
unless you have special atom type codes.

Converting ATOMC to DSN2 format

$tntbin/convert << $eof

CELL 94.1 94.1 131.4 90 90 120

INCLUDE 1tmn.cor

INCLUDE 1tmn.seq

PUNCH 1tmn.dns2 DSN2 15 P 17 CL- 30 ZN++ 20 CA++

$eof

if ($status >< 0) then exit 1

This example writes the coordinates and sequence information stored
in 1tmn.cor and 1tmn.seq to the DSN2 �le 1tmn.dsn2. The shell com-
mand to dsn2 performs this function.

DSCREEN 113

DSCREEN

Derivative File Screening Program

This program is used to �nd out which atoms are least satis�ed with
their current parameters, with respect to a particular module. It reads
the derivative �le produced by the module of interest, �nds the largest
derivatives for the three classes of parameters; XYZ, B, and OCC, and
writes a nicely formatted list of them. It is intended that this list be
used to aid in the interpretation of the map when work is being done
to manually rebuild a model.

The re�nement of a model has converged when none of the param-
eters are changing. However, a parameter can become �xed for two
reasons; either all the modules agree that this is a good value, or each
module prefers a di�erent value and the parameter is balanced in be-
tween. The second case is a sign that manual intervention is required to
place the atoms in that region in a new local minimum. This program
is a tool for �nding which regions of the model are in trouble. Where
the various modules are at odds, the derivatives from each module will
be larger than normal and point in opposite directions. This utility will
read the derivative �le and point out the problem areas in the model.

The program requires that the coordinates of the model, and the
derivative �le be entered before the SCREEN command. A CELL and
a GRID statement may be required if the fraction or grid coordinate
system is used for either the coordinates or the derivatives.

114 REFINEMENT PACKAGE UTILITIES

Command Statements

SCREEN <Number>

This command causes the program to produce a list of the atoms
with the largest derivatives for each class of parameters. An example
showing the use of the SCREEN command is shown below.

$tntbin/rfactor << $eof

INCLUDE $tntdata/formfactor.dat

INCLUDE your.tnt

INCLUDE init.cor

OPTION SET REFINEMENT

GRADIENT rfactor.dat

$eof

if ($status >< 0) then exit 1

#

$tntbin/dscreen << $eof

INCLUDE init.cor

INCLUDE rfactor.dat

SCREEN 45

$eof

if ($status >< 0) then exit 1

#

rm rfactor.dat

FOURIER 115

FOURIER

Di�raction Data Conversion Program

This program performs various operations on density maps and
Fourier coe�cients. It can convert one form of data into the other
and calculate either from atomic coordinates. It can also combine such
data from two sources to produce a new map or coe�cient �le. The
data may be either added, subtracted, multiplied, or divided.

The program operates on three di�erent forms of data: Coordinate
sets, density maps, and Fourier coe�cients. Its purpose is to perform
interconversions between these types of data. The conversion between
maps and coe�cients requires a Fourier transform. The conversion of
coordinates to a density map is a straightforward calculation of the
density of each atom. The conversion of a map to coordinates returns
an atom located at each peak in the map. This is the familiar peak
pick operation.

When a map is calculated from coe�cients those coe�cients are
weighted by their �gure of merits to produce the \best" map. If no
FOM's are given no weighting is performed.

Most of the work of this program is performed with the PUNCH
command.

The Space Groups

When calculating coe�cients from a map or set of coordinates all
space groups are implemented. This includes space groups with cubic
symmetry, centers of symmetry, and mirrors. When calculating a map
from coe�cients all space groups work except for those which contain
mirrors but do not contain centers of symmetry (such as Pm). This
means that maps can be calculated in all space groups in which a protein
can crystallize.

In all cases rhombohedral space groups must be indexed in the
hexagonal setting.

116 REFINEMENT PACKAGE UTILITIES

Options

FOURIER recognizes one option. This option can be set with the
OPTION statement described in the \Standard TNT Data Statements"
section. As an example, the activation of the VERBOSE option would
require the statement

OPTION SET VERBOSE

� VERBOSE

The Verbose option causes the program to write additional infor-
mation to the log �le about the choices it makes.

Unique Input Statements

FILE <File Id> <File name> [FORMAT (HKL | MAP | PACKED)] -

[SCALE <Value>] [BLUR <Value>]

This statement describes an external binary data �le to the program.
This �le is subsequently referred to by the arbitrary \File Id". If the
�le's format is not HKL, which is the default, the type of �le may be
given via the FORMAT option. When the data are read from the �le a
scale factor and blur may be applied. Because of the extreme di�culty
of applying a blur to an electron density map, when the �le is a map �le,
the BLUR option is presumed to indicate that the map has a already
been blurred by the indicated amount.

FOURIER: Command Statements 117

Command Statements

PUNCH <File name> {MAP | DSN6 | HKL | PACKED | ATOMx} -

[{SOURCE <Id> | CORRECT <Id> | -

ADD <Id1> <Id2> | SUBTRACT <Id1> <Id2> | -

MULTIPLY <Id1> <Id2> | DIVIDE <Id1> <Id2> |

PATTERSON <Id>}] -

[HIGHEST <Value>] -

[BLUR <Value>] [SCALE <Value>] -

[{GRID 3<Value> | OVERSAMPLE <Value>}] -

[{LAYOUT 6<Value> | ASYMMETRIC}]

One may PUNCH data in the formats:

Short Name Full Name
MAP Ten Eyck Map Format
DSN6 Frodo DSN6 Map Format
HKL Formatted Coe�cients

PACKED Unformatted Coe�cients
ATOMx Identi�es peaks in map

The rest of the PUNCH command line describes the origin of the
information and the details of the �le to be produced. The various
modi�ers (SCALE, BLUR, etc.) are described in the \Standard TNT
Data Statements" section (page 31).

The default coe�cient �le is an asymmetric unit of coe�cients cal-
culated from the atomic positions.

The default map is a molecular volume of model electron density
written in Ten Eyck map format, sampled at a rate proper for repre-
senting such a density function.

118 REFINEMENT PACKAGE UTILITIES

What kind of map?

There are �ve types of sources for the information in a �le. If no source
is explicitly mentioned the program uses the atomic coordinates for the
source. This is how model electron density and model structure factors
are produced.

The second type of source is introduced via the SOURCE keyword.
This keyword is followed by the �le identi�er of a map or coe�cient �le
which is processed to produce the new �le. If the data type of the input
�le di�ers from that of the output �le the proper data type conversion
is performed.

The CORRECT keyword is the third type. It behaves just like the
SOURCE keyword except that the coe�cients read, or calculated from,
the �le are moved to the correct asymmetric unit and sorted. Usually
this operation is only required when a data set of observed reections
are being converted to a TNT format. In such a case you would read
the illegal HKL �le with the CORRECT keyword and write out a new
HKL �le. One could read a map �le with the CORRECT keyword but
that would be wasteful, the code which converts the map to structure
factors will automatically produce data in the correct asymmetric unit
and sorted in the proper order.

CORRECT also restricts the asymmetric unit of the data to include
only unique reections. All other types of sources in TNT will produce
a small number of redundant reections.

The fourth type of input is controlled with the ADD, SUBTRACT,
MULTIPLY, and DIVIDE keywords. These keywords are followed by
two �le identi�ers. The data in these two �les are read and each trans-
formed to the output data type. Then the contents are combined using
the speci�ed operator and written to the �le.

One must use these keywords with care. It is quite likely that the
operation you request will change either the space group, the resolution
limit of the data, or both.

The last type of \source" is controlled by the PATTERSON key-
word. This keyword indicates that the data to be written will be either

FOURIER: Command Statements 119

Patterson coe�cients or a Patterson map, depending upon the output
�le's format.

How much map to write?

While the default map layout is a molecular volume this can be over-
ridden. With the keyword ASYMMETRIC one can request an asym-
metric unit of density. A more speci�c request can be made using the
LAYOUT keyword.

These keywords are meaningless when writing Fourier coe�cients.

How large will the map �le be?

When writing a map the program will choose a sampling rate, the
grid, for the map. The sampling rate is chosen based on the highest
resolution Fourier component of the map. While this is simple when
the map is to be calculated from Fourier coe�cients it is another matter
when calculating density from atomic coordinates. In this case the map
will have to be sampled very �nely because the atoms contain such high
resolution data. One can reduce the size of the map by blurring out the
high resolution terms you are not interested in. This is done with the
BLUR option. When you use the BLUR option you must remember
to indicate to the program reading the map that it has been blurred,
because the map must be sharpened when read.

Fourier will never write a map with a non-zero blur unless you specif-
ically request it. It is usually wise, when writing calculated electron
density maps to blur them with a value of 20�A2.

Picking Peaks from a Map

One can enter either a set of Fourier coe�cients or a map and request
that Fourier list the peaks in that map. Fourier will locate each peak
and attempt to deduce the parameters of an atom which would generate
a peak of that height. Fourier will always produce an atom with an
occupancy of 1.0. The temperature factor will be chosen to replicate

120 REFINEMENT PACKAGE UTILITIES

the height of the peak in the map. The position of the peak will be
the nearest grid point. If possible Fourier will produce atoms of type
\O". If the temperature factor of an oxygen atom must be below 1.0 to
generate a peak of the needed height heaver atom types will be tried.

The default region of space for di�erence map peaks is a molecular
volume. Of the many possible symmetry images of a peak, one is
chosen which is closest to an atom in the current coordinate set. If
Fourier has been given no coordinates the peaks will be placed in the
real-space asymmetric unit. The peaks in a arbitrary region of space
can be selected using the GRID and LAYOUT modi�ers of the PUNCH
command.

When PUNCHing peaks the additional modi�er `HIGHEST' is avail-
able. In the default case all peaks in the map are listed to the output
�le. One can use the HIGHEST modi�er to ask that only the tallest
peaks are produced. The number following the word HIGHEST is the
number of peaks to list.

The conversion from peak height to temperature factor is very sen-
sitive to errors in the scaling of the observed and calculated data, as
well as to the presence of the low resolution components of the map. A
high resolution re�ned di�erence map which includes all the low resolu-
tion data will provide good estimates of the temperature factors of the
atoms identi�ed. As the map becomes poorer the estimates will develop
greater errors. The tendency will be to overestimate the magnitude of
the B factor.

Most people do not realize it but the scale of a Fo-Fc map is di�erent
that that of a 2Fo-Fc map. A Fo-Fc map must always be multiplied by
a factor of two to be placed on an absolute scale of electrons/�A3. If you
have a re�ned model and choose one water molecule to study you may
�nd, for example, that the density at the center of the atom in a model
map is 2.5 electrons/�A3. If you remove the atom from the coordinate
�le and calculate a Fo-Fc map you will �nd the peak height is only 1.25.
(This is exempli�ed in the derivation of the 2Fo-Fc map coe�cients.
One starts with a Fc map. Next a di�erence map (Fo-Fc) is added
but because the Fo-Fc map is on a di�erent scale it must be multiplied
by two before the addition. The result is Fc + 2(Fo-Fc) or 2Fo-Fc.)
In almost all uses of the peak pick function the input coe�cients will

FOURIER: Command Statements 121

be di�erence coe�cients, and they will have to be multiplied by two.
This operation is performed using the SCALE modi�er on the FILE
statement which introduces the map or coe�cient �le. The example
below (way below!) may make this issue more clear.

Example of the Calculation of Structure Factors in P63

This example will convert a list of coordinates to a set of Fourier
coe�cients.

$tntbin/fourier << $eof

CELL 111.9 111.9 98.2 90 90 120

RESOLUTION 20 2.5

INCLUDE $tntdata/symmetry/p63.dat

INCLUDE $tntdata/formfactor.dat

INCLUDE init.cor

PUNCH testfc.hkl HKL

$eof

if ($status >< 0) then exit 1

To calculate a model electron density map instead the PUNCH com-
mand in the the example should be replaced with

PUNCH test.map MAP ASYMMETRIC BLUR 20

This command will write to the �le test.map an asymmetric unit of
electron density with a blur of 20�A2. The sampling rate will be chosen
to be the coarsest allowed for this blur.

Converting an HKL File to a PACKED File

This example converts a data set from HKL format to PACKED
format. Because there is no data type conversion the cell constants
and symmetry operators are not required.

122 REFINEMENT PACKAGE UTILITIES

$tntbin/fourier << $eof

FILE MIRPHASE bcl.hkl FORMAT HKL

PUNCH mir.pak PACKED SOURCE MIRPHASE

$eof

if ($status >< 0) then exit 1

Converting a MAP File to an HKL File

This example converts a data set from MAP format to HKL format.
An asymmetric unit of map must be supplied in density.map.

$tntbin/fourier << $eof

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 1.7

INCLUDE $tntdata/symmetry/p6122.dat

FILE MAP density.map FORMAT MAP

PUNCH coefficient.hkl HKL SOURCE MAP

$eof

if ($status >< 0) then exit 1

Converting a PACKED File to a DSN6 Map File

This example will convert a set of Fourier coe�cients to DSN6 map
format. The coe�cients are in the �le 2fo-fc.pak. The coordinate �le
current.cor is read simply to allow the layout of the DSN6 map to be
determined by the model's molecular volume.

$tntbin/fourier << $eof

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 1.7

INCLUDE current.cor

INCLUDE $tntdata/symmetry/p6122.dat

FILE COEFS 2fo-fc.pak FORMAT PACKED

PUNCH 2fo-fc.dsn6 DSN6 SOURCE COEFS OVERSAMPLE 4

$eof

if ($status >< 0) then exit 1

FOURIER: Command Statements 123

Locating the Peaks in a Map

This example locates the peaks in a di�erence map. Because map
�les are so large it is ine�cient to read and write them. It is always
better to use the PACKED Fourier coe�cient �le format to transfer the
information instead. Here the di�erence coe�cients are to be found in
the �le fo-fc.pak and the current model is located in current.cor

The 30 tallest peaks are written to peaks.cor.

$tntbin/fourier << $eof

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 20 1.7

INCLUDE current.cor

INCLUDE $tntdata/symmetry/p6122.dat

INCLUDE $tntdata/formfactor.dat

FILE FO-FC fo-fc.pak FORMAT PACKED SCALE 2.0

PUNCH peaks.cor ATOMC SOURCE FO-FC HIGHEST 30

$eof

if ($status >< 0) then exit 1

Adding Two MAP Files

The new �le is created by adding map 1.map and map 2.map.

$tntbin/fourier << $eof

FILE FIRST_MAP map_1.map FORMAT MAP

FILE SECOND_MAP map_2.map FORMAT MAP

PUNCH new.map MAP ADD FIRST_MAP SECOND_MAP

$eof

if ($status >< 0) then exit 1

Note the the adding of two maps does not require that you enter
the space groups of either map. However you should be aware that the
resulting map will have the space group that is the greatest common
subgroup of the space groups of the two arguments. If you ask for the
Fourier coe�cients of the result of the summation TNT will use the
proper space group in the calculation.

124 REFINEMENT PACKAGE UTILITIES

Correcting the Asymmetric Unit of Coe�cients

$tntbin/fourier << $eof

CELL 94.1 94.1 131.4 90 90 120

RESOLUTION 1.5

INCLUDE $tntdata/symmetry/p6122.dat

FILE FOBS bad_asymm.hkl FORMAT HKL

PUNCH good_asymm.hkl HKL CORRECT FOBS

$eof

if ($status >< 0) then exit 1

This example (which is basically the code for the shell command
correct) moves the data from the �le bad asymm.hkl to the correct
asymmetric unit, removes all redundant reections, notes all incon-
sistent duplicate reections, sorts the remaining ones into the desired
order, and writes the resulting data set to good asymm.hkl.

REPORT {FILE <Id> | SPACEGROUP}

� FILE

The REPORT FILE command instructs the program to list inter-
esting things about a map or coe�cient �le on disk. Among other
things, it will list the r.m.s. value for a map �le or the r.m.s. value
for the map which would result from a �le of coe�cients. The pro-
gram will also list the Wilson B factor for a coe�cient �le. The
calculation of the Wilson B requires the scattering factors for the
atom types present in the model.

$tntbin/fourier << $eof

CELL 94.1 94.1 131.4 90 90 120

INCLUDE $tntdata/symmetry/p6122.dat

RESOLUTION 1.5

INCLUDE $tntdata/formfactor.dat

FOURIER: Command Statements 125

FILE FOBS pgn.hkl FORMAT HKL

REPORT FILE FOBS

$eof

if ($status >< 0) then exit 1

For Fourier coe�cient �les this report is accessed using the re-
port hkl shell script.

� SPACEGROUP

The REPORT SPACEGROUP command causes Fourier to write
its analysis of the current space group. It lists the equivalent
positions, the lattice class, the point group symmetry, and the
centric zones.

$tntbin/fourier << $eof

INCLUDE $tntdata/symmetry/p6122.dat

REPORT SPACEGROUP

$eof

if ($status >< 0) then exit 1

126 REFINEMENT PACKAGE UTILITIES

GATHER MAP

NCS Map Averaging Program

This program is used to generate maps which have been averaged
over the noncrystallographic symmetry. This operation is required
when your model is being constrained to ncs and you are starting model
building.

Like all constrained ncs in TNT, Gather map is a little clunky. The
script for running it must be edited for each project, and therefore
not generic script is supplied. The prototype script can be found in
tnt/doc/gather map and will be described later. You will be required
to calculate a separate map for each CLUSTER in your molecule. While
on the graphics system you will need to remember to switch from one
map to another at the proper time.

You cannot use ncs map averaging programs from other packages
along with TNT re�nement. TNT's idea of noncrystallographic symme-
try is more general than all other programs in the �eld. Other programs
de�ne the transformation as a rotation and a translation. TNT's ncs
tranformation is generalized to include a rotation, translation and a B
factor shift. When an ncs averaged map is calculated, the individual
images must be rotated, translated, and blurred or sharpen the appro-
priate amount. It does not make sense to average two maps, one of
a molecule with an average B of 20�A2 and another with an average B
of 40�A2. The second map must be sharpened by 20�A2 prior to being
added to the �rst.

GATHER MAP: NCS Map Averaging Program 127

Options

Gather map recognizes one option. This option can be set with the
OPTION statement described in the \Shared I/O Properties" chapter
(page 27). As an example, the activation of the VERBOSE option
would require the line

OPTION SET VERBOSE

� VERBOSE

The Verbose option causes the program to write additional infor-
mation to the log �le about the choices it makes.

Unique Input Statements

FILE <File Id> <File name> {FORMAT (HKL | MAP | PACKED)} -

[SCALE <Value>] [BLUR <Value>]

This statement describes an external binary data �le to the program.
This �le is subsequently referred to by the arbitrary <File Id>. If the
�le's format is not HKL, which is the default, the type of �le may be
given via the FORMAT option. When the data are read from the �le a
scale factor and blur may be applied. Because of the extreme di�culty
of applying a blur to an electron density map, when the �le is a map �le,
the BLUR option is presumed to indicate that the map has a already
been blurred by the indicated amount.

128 REFINEMENT PACKAGE UTILITIES

Command Statements

PUNCH <File name> {MAP | DSN6 | HKL | PACKED} -

CLUSTER <Cluster name> -

[BLUR <Value>] [SCALE <Value>] -

[{GRID 3<Value> | OVERSAMPLE <Value>}] -

[{LAYOUT 6<Value> | ASYMMETRIC}]

(The details of the PUNCH command are described in the \Shared
I/O Properties" chapter { page 31.)

The part of the PUNCH command unique to Gather map is the
CLUSTER modi�er. This modi�er introduces the name of the CLUS-
TER statement which will be used to locate the ncs transformations.
The default layout covers the atoms of the cluster's prototype.

You will note that the �le ID of the source coe�cients (or map) is
not given. Here we come to a klunky part. To calculate the averaged
map, Gather map must calculate all the unaveraged maps at the same
time. Unfortunately a limitation in the internal design of TNT is that
a particular �le ID can only be read for one map calculation at a time.
Even though there is only one input �le there must be a seperate �le ID
for each copy of the molecule in the asymmetric unit. This requirement
can result in a large number of FILE statements.

Since the PUNCH command does not allow you to specify the �le
ID of your choice you must use the �le ID's it assumes. These ID are
not very creatively named. They are MAP01, MAP02, etc. Your script
must contain one FILE statement for each copy of the molecule in your
asymmetric unit.

Program Operation

The only command in the program Gather map is PUNCH. Most of
the details were covered in the previous section. Here we will concen-
trate on an example. Let's calculate ncs averaged 2Fo-Fc maps for

GATHER MAP: Command Statements 129

the monoclinic form of Hen Egg White Lysozyme as described in the
\Examples" chapter of the TNT Users' Guide. This crystal has two
molecules in the asymmetric unit, and each molecule is composed of
two domains. We will calculate an averaged map for each domain. The
starting point is a \gathered" coordinate �le.

Since the coordinate �le contains all the atoms in the asymmetric
unit are required to directly calculate the 2Fo-Fc Fourier coe�cients
we must �rst \scatter" the model, and then calculate normal 2Fo-Fc
coe�cients. Gather map will take these coe�cients, the \gathered"
coordinates, the ncs transformations (here assumed to be in the �le
gathered.ncs, and the usual crystallographic information (cell con-
stants, etc.) and produce the map. The script looks like this. (Usually
one would enter the TNT control �le but I have included the crystal-
lographic informaiton directly to make its presence more obvious.

$tntbin/gather_map << $eof

CELL 28 62.9 60.5 90 90.8 90

INCLUDE $tntsymmetry/p21.dat

RESOLUTION 2.2

INCLUDE pdb1lym.seq

CLUSTER N RESIDUE 1 - 91 CHAINS A B

CLUSTER C RESIDUE 92 - OXY CHAINS 1 B

INCLUDE gathered.cor

INCLUDE gathered.ncs

FILE MAP01 2fo-fc.pak FORMAT PACKED

FILE MAP02 2fo-fc.pak FORMAT PACKED

PUNCH 2fo-fc_n.dsn6 DSN6 CLUSTER N OVERSAMPLE 4

PUNCH 2fo-fc_c.dsn6 DSN6 CLUSTER C OVERSAMPLE 4

$eof

if ($status >< 0) exit 1

In this example the layout of the two maps are identical. Each

130 REFINEMENT PACKAGE UTILITIES

covers all the atoms present in gathered.cor. Each averaged map is
only vaild over the atoms in the chain with the name of its cluster,
i.e. the map in 2fo-fc n.dsn6 is only valid for atoms in the N chain
prototype.

OVERLAY 131

OVERLAY

A Molecular Superposition Program

This program is used to superimpose two chemically identical sec-
tions within a molecule or in two di�erent molecules. To use this pro-
gram one �rst speci�es a target with the TARGET statement. The
target is a portion of the structure which will not be moved while other
sections of the structure are placed on top of it. The target may be
either a single residue or a residue range. Only the atoms within each
residue whose names are on the SELECT statement will be used to
determine the match. A SELECT statement must always be given and
all the atoms on the SELECT statement must be in each of the residues
mentioned on both the TARGET and OVERLAY statements.

The command OVERLAY is used to specify a residue or residue
range for which a rotation matrix and translation vector will be calcu-
lated (Kabsch, W., Acta Cryst. (1978).A34, 827-828). The OVERLAY
command does not apply this transformation to anything, it simply is
remembered. The APPLY command is used to ask the program to
apply the transformation to a speci�ed portion of the structure. The
portion may either be a residue, or a list of wild cards. The PUNCH
command causes the new coordinate set to be printed to the speci�ed
�le in the desired format. The PUNCH command can also be used to
print the transformation itself to a �le.

This program will accept and apply transformations de�ned with
the TRANSFORMATION statement. The TRANSFORMATION state-
ment will accept Euler angles, spherical polar angles, or a raw matrix.
When multiple OVERLAY and TRANSFORMATION statements are
encountered the most recent is used by the APPLY and PUNCH com-
mands.

The program can also RENAME a chain or chain type, or COPY
a collection of atoms to a new chain. These commands allow a great
deal of exibility in the operation of this program. With the RENAME
command one can read two structures which originally had the same
chain name and then superimpose them.

132 REFINEMENT PACKAGE UTILITIES

Unique Input Statements

SELECT N(<Atom name>)

This statement allows a number of atom names to be read. When
the subject is being matched to the target, only atoms whose names
are on a SELECT statement will be used. Each residue considered
must contain all the atoms mentioned on the SELECT statement. This
statement is required for the OVERLAY command.

Each SELECT statement adds its atoms to the complete list. Once
atoms have been selected they cannot be unselected.

SELECT CA

SELECT CA C N O

The �rst example shows the statement that would be given if one
wished to overlay two protein molecules but only to consider the alpha
carbons. The second line would be used for the same problem if it were
decided to use all the main chain atoms.

TARGET <Chain name> | <Residue 1> - <Residue 2>

TARGET <Chain name> | <Residue name>

This statement speci�es the target over which the portion of the
structure selected on the OVERLAY statement will be superimposed.
The speci�ed portion of the structure must be either a single residue
or a residue range. It must match the OVERLAY structure residue for
residue. No wild cards are allowed in any of the �elds.

OVERLAY: A Molecular Superposition Program 133

Command Statements

APPLY <Chain name>|<Residue name>:<Atom name>

This command instructs the program to apply the most recent trans-
formation to the speci�ed portion of the structure. Wild cards may be
placed in any of the �elds. If nothing follows the APPLY keyword the
transformation is applied to all of the structure.

COPY <Chain name>|<Residue name>:<Atom name> <Chain name>|

This command copies the atoms speci�ed to the second chain men-
tioned on the input line. The atoms are not simply moved from one
chain to the other, they are replicated. Wild cards may be placed in
the <Residue name> or <Atom name> slots. The source chain must
exist and the destination chain must not. The sequence of the residues
in the new chain is preserved. However, any interchain linkages speci-
�ed on the CHAIN statement are not copied to the new chain because
there is insu�cient information to build the new links.

OVERLAY <Chain name>|<Residue 1> - <Residue 2>

OVERLAY <Chain name>|<Residue name>

This command causes the program to calculate the transformation
which, when applied to the speci�ed section of the structure will cause
it to be superimposed on the target residue range speci�ed on the last
TARGET statement. If the number of residues given do not match
the number on the TARGET statement or there is not a one-to-one
match of atoms in the two residue ranges (after considering all SE-
LECT statements) the program will exit with an error message. At
least one SELECT statement is must have been encountered before the
OVERLAY command.

134 REFINEMENT PACKAGE UTILITIES

PUNCH <File name> {ATOM | ATOMC | ATOMG | TRANSFORMATION}

The PUNCH command causes the program to write the coordinates
of the entire structure into the named �le in the speci�ed format.

If the TRANSFORMATION format is speci�ed, a TRANSFOR-
MATION statement will be written to the named �le. This statement
will contain the current transformation in TNT's cartesian �Angstrom
coordinate system.

RENAME {CHAIN <Chain name> | CHAIN_TYPE <Chain type>} -

TO <New name>

This statement causes the name of the speci�ed chain or chain type
to be changed to the value speci�ed. This sort of operation is useful
when one wants to compare two structures but both structures are
de�ned using the \chain with no name". The �rst structure can be
read, its chain name changed, and then the second structure can be
read.

RENAME CHAIN null TO 157I

RENAME CHAIN TYPE null TO 157I

This example shows how a structure, de�ned with the default chain
can be renamed so that both the chain type and chain name is 157I. (In
cases where the chain name and type are unnamed, as is usually done
when there is only one chain, you can reference the unnamed object
with the name \null".

The RENAME command can rename several other kinds of things
as well. For the full details see page 32.

OVERLAY: A Molecular Superposition Program 135

Program Operation

Superimposing ncs Related Chains

$tntbin/overlay << $eof

INCLUDE azurin.cor

INCLUDE azurin.seq

SELECT CA C N O

TARGET 1|1 - 129

OVERLAY 2|1 - 129

APPLY 2|

PUNCH output.cor ATOMC

$eof

if ($status >< 0) then exit 1

This example show how one chain of a structure can be overlayed
onto another. The structure used is that of Azurin solved by Dr. E. N.
Baker. The coordinate and sequence �les are included and the main
chain atoms are selected. The target is de�ned as all 129 amino acids
of chain 1. The transformation which superimposes the 129 residues of
chain 2 onto chain 1 is then determined. Next this transformation is
applied to all of chain 2 and the resulting coordinates are written with
a PUNCH command.

Superimposing Residues within a Model

$tntbin/overlay << $eof

INCLUDE core5r.cor

SELECT C1A NA C4A CHB C1B C2B C3B CAB C4B NB

SELECT CHC C1C NC C4C CHD C1D C2D C3D CAD C4D ND CHA

TARGET 360

OVERLAY 362

APPLY 362

OVERLAY 364

APPLY 364

OVERLAY 366

APPLY 366

136 REFINEMENT PACKAGE UTILITIES

OVERLAY 368

APPLY 368

OVERLAY 370

APPLY 370

OVERLAY 372

APPLY 372

PUNCH output.cor ATOMC

$eof

if ($status >< 0) then exit 1

This example is more complicated. Here Overlay reads in the co-
ordinates of the bacteriochlorophyll core of the bacteriochlorophyll-a
containing protein, selects for consideration only the atoms in the con-
jugated ring system, superimposes each ring, in turn, onto ring 360,
and writes the resulting coordinates to the �le output.cor.

Symmetry Expansion

Next is shown how to use Overlay to expand a structure by crystallo-
graphic symmetry. The example is the Bacteriochlorophyll-a containing
protein which exists as a trimer but the asymmetric unit is a monomer.
Sometimes it is useful to expand the coordinates out to the full trimer.

$tntbin/overlay << $eof

CELL 111.9 111.9 98.3 90 90 120

TRANSFORMATION three-fold OPERATOR -Y+1, X-Y, Z

INCLUDE bcl_phase7r.cor

RENAME CHAIN NULL TO A

COPY A| B|

APPLY B|

COPY B| C|

APPLY C|

PUNCH test.cor ATOMC

OVERLAY: A Molecular Superposition Program 137

$eof

if ($status >< 0) then exit 1

The symmetry operator and the coordinates are read. Just to clean
up the appearance of the �nal coordinate �le the original nameless chain
is renamed to A. Then chain A is copied to B and B is transformed.
Then B is copied to C and it too is transformed by the same operator.
C, having been transformed twice, is now right where we want it.

Applying Arbitrary Transformations

This last example shows how to apply an arbitrary transformation to
an entire coordinate set. The coordinates are read in and the transfor-
mation is speci�ed on a TRANSFORMATION statement. The trans-
formation is then applied with the APPLY command and the result is
PUNCHed out.

$tntbin/overlay << $eof

INCLUDE phase5r.cor

TRANSFORMATION XXXX SYSTEM TNT -

MATRIX -0.5 -0.866 0 0.866 -0.5 0 0 1 -

TRANSLATION 96.9082 -55.95 0

APPLY

PUNCH output.cor ATOMC

$eof

if ($status >< 0) then exit 1

138 REFINEMENT PACKAGE UTILITIES

SOLVENT

Solvent Region Flattening Program

This program is used to perform the calculations required for solvent
attening of poorly phased electron density maps. It can be used to
calculate a mask of the solvent region and it can apply this mask to the
an electron density map to produce a map where the protein region is
una�ected but the solvent region is absolutely at.

The method used to calculate the solvent mask is that of Wang
(Wang, B.C., \Resolution of Phase Ambiguity in Macromolecular Crys-
tallography", Methods Enzymol. (1985). 115, 90-112) as modi�ed, to
improve performance, by Leslie (Leslie, A.G.W., \A Reciprocal-space
Method for Calculating a Molecular Envelope using the Algorithm of
B. C. Wang", Acta Cryst. (1987). A43, 134-136). First the map is
read and the density values less than zero are set to zero. This map
is Fourier inverted and the coe�cients are multiplied by a function
whose own Fourier transform is a cone with a particular radius. This
operation is the equivalent of a weighted local average of the map.

A new map is calculated from the modi�ed coe�cients. A level of
electron density is chosen so that a certain percentage of the density
points in the map are below it. These points de�ne the solvent region
of the unit cell. The percentage is the solvent fraction of the crystal
and must be supplied by the user. The points in the solvent region
are marked with a value of zero, which produces the envelope. This
envelope can be used to \mask" out the solvent region of the original
map or can be written to the disk for later use.

The radius of the cone used in the local averaging step depends on
the size of the molecule and the quality of the data. The default value
is 9.25�A, but this value may be overridden by the user. At the start you
will want to examine the solvent envelope to judge its quality. It should
be connected with few to no holes. You can change the envelope by
varying the radius. A larger radius will produce a smoother envelope
while a smaller radius will produce a more elaborate one.

SOLVENT: Solvent Region Flattening Program 139

Options

Solvent recognizes one option. This option can be set with the OPTION
statement described in the \Shared I/O Properties" chapter (page 27).
As an example, the activation of the VERBOSE option would require
the line

OPTION SET VERBOSE

� VERBOSE

The Verbose option causes the program to write additional infor-
mation to the log �le about the choices it makes.

Unique Input Statements

FILE <File Id> <File name> {FORMAT (HKL | MAP | PACKED)} -

[SCALE <Value>] [BLUR <Value>]

This statement describes an external binary data �le to the program.
This �le is subsequently referred to by the arbitrary <File Id>. If the
�le's format is not HKL, which is the default, the type of �le may be
given via the FORMAT option. When the data are read from the �le a
scale factor and blur may be applied. Because of the extreme di�culty
of applying a blur to an electron density map, when the �le is a map �le,
the BLUR option is presumed to indicate that the map has a already
been blurred by the indicated amount.

SET [RADIUS <Value>] [SOLVENT <Value>] [LEVEL <Value>]

The SET statement is used to de�ne the values of the parameters
used in calculating the solvent envelope and the attened map. The
de�nitions of these parameters are:

RADIUS The radius of the averaging cone (in �A).
SOLVENT The percent of the crystal which is solvent.
LEVEL The density value the attened region is set to.

140 REFINEMENT PACKAGE UTILITIES

RADIUS is to be given in �Angstroms and LEVEL should be de�ned
in whatever units the other density values in the map have, usually
electron/�A3.

Command Statements

PUNCH <File name> {MAP | DSN6 | HKL | PACKED} -

(ENVELOPE <Id> | FLATTEN <Id>) -

[BLUR <Value>] [SCALE <Value>] -

[{GRID 3<Value> | OVERSAMPLE <Value>}] -

[{LAYOUT 6<Value> | ASYMMETRIC}]

(The details of the PUNCH command are described in the \Shared
I/O Properties" chapter { page 31.)

There are two types of maps produced by Solvent. If the source
of information (de�ned with the �le identi�er ID) is introduced by the
modi�er ENVELOPE the map produced by the PUNCH command will
be a molecular envelope. If the modi�er is FLATTEN the program will
produce a attened map and write that to disk.

There are two maps required to produce a attened map. One needs
the map whose solvent region is to be obliterated and one needs a sol-
vent envelope to de�ne that solvent region. The default operation of
Solvent is to calculate the solvent mask from the map which is to be
attened. If you wish to utilize a di�erent solvent mask you may in-
troduce this mask to Solvent by de�ning the �le identi�er ENVELOPE
to correspond to the desired �le. If the �le identi�er ENVELOPE has
been de�ned that �le will be assumed to contain the proper solvent
mask.

Program Operation

The only command in the program Solvent is PUNCH. With it you
can create an envelope marking the solvent region or a solvent at-
tened map. The examples given below assume that the TNT control

SOLVENT: Command Statements 141

�le contains the cell constants, and the space group's symmetry oper-
ators. For clarity the resolution limits and SET statements are shown
explicitly.

Example of Calculating a Solvent Envelope

$tntbin/solvent << $eof

INCLUDE your.tnt

RESOLUTION 3.0

FILE DATAFILE density.map FORMAT MAP

SET SOLVENT 60.0

PUNCH envelope.map MAP ENVELOPE DATAFILE GRID 144 144 128

$eof

if ($status >< 0) then exit 1

Example of Calculating a Flattened Map

$tntbin/solvent << $eof

INCLUDE your.tnt

RESOLUTION 3.0

FILE MAP init.map FORMAT MAP

SET SOLVENT 60 LEVEL 0.0

PUNCH flat.map MAP FLATTEN MAP

$eof

if ($status >< 0) then exit 1

Example of Calculating a Flattened Map using Another Mask

$tntbin/solvent << $eof

INCLUDE your.tnt

RESOLUTION 3.0

FILE MAP init.map FORMAT MAP

FILE ENVELOPE envelope.map FORMAT MAP

SET SOLVENT 60 LEVEL 0.0

PUNCH flat.map MAP FLATTEN MAP

$eof

if ($status >< 0) then exit 1

142 REFINEMENT PACKAGE UTILITIES

Appendix A

File Formats

ATOMx Format Coordinate Files

In this format, there is one line per atom. The line starts with the
word ATOM for fractional crystallographic coordinates, ATOMC for
Cartesian coordinates in �Angstroms, or ATOMG coordinates in crys-
tallographic grid points, followed by the atom type, the atomic coordi-
nates, the individual temperature factor, the occupancy, the atom name
(i.e. CA, O, NE1, etc.), the residue name, and chain name (optional)
in that order. All alphanumeric �elds (atom type, atom name, residue
name, and chain name) are left justi�ed. The programs in this package
will read a coordinate �le with any spacing between elements on a line.
To allow the user to write programs to read and write coordinate �les
using Fortran FORMAT statements the following format is adhered to
{ (A6,A4,3(1X,F9.4),1X,F6.2,1X,F6.4,1X,A6,2(1X,A4)). The program
Convert and can be used to punch a coordinate �le in this format if
given an arbitrarily spaced ATOM, ATOMC, or ATOMG �le.

They also can change coordinate �les from one �le format to an-
other. Both of these functions are carried out by the PUNCH com-
mand.

The coordinate system used for the Cartesian system uses the three
axes a�, c�a�, c (This is not the PDB's convention). The program
Geometry will display the orthogonalization and deorthogonalization

143

144 FILE FORMATS

matrixes for any crystal when given a CELL statement followed by the
command REPORT STRUCTURE.

REMARK statements may be placed anywhere in the coordinate
�le. They usually will be echoed to the output device when read and
are not passed to any other �le.

Here is an example of the format.

ATOMC N 34.6140 40.2998 -0.9950 25.56 1.0000 N 1

ATOMC C 33.6483 41.1420 -0.2133 24.46 1.0000 CA 1

ATOMC C 33.9352 42.6028 0.0604 24.32 1.0000 C 1

ATOMC O 35.0805 43.0812 0.2754 25.61 1.0000 O 1

ATOMC C 33.5180 40.4243 1.2352 22.76 1.0000 CB 1

DSN2 (Frodo) Format Coordinate Files

DSN2 coordinate �les can only be written and read by the TNT pro-
gram Convert. DSN2 �les are binary �les which are read using direct
record access. The format was designed to allow the rapid location of
the atoms of particular residues. It presumes that the entire �le will not
be read into memory. The assumptions which underlie these choices are
no longer valid and one expects that no new graphics programs will be
written to read this format.

The �le format itself is not documented well. The implementation in
TNT was created by reverse-engineering the �le as produced by Alwyn
Jones' program TOM. It appears that Turbo-Frodo uses a di�erent
de�nition. Turbo-Frodo's DSN2 is not supported by TNT.

If you are interested in the details of TNT's implementation you
can write to me and I will send them to you.

HKL Format Structure Factor Files

This type of �le has one reection per line, in the following format.
The line should begin with the keyword \HKL ", followed by h, k,
l, amplitude, sigma, phase (in degrees ranging from 0 to 359.9), and

PACKED FORMAT STRUCTURE FACTOR FILES 145

�gure of merit in the format (A4, 3I4, 3F8.1, F8.4). If the phase for
this reection is unknown the �gure of merit should be zero and the
phase should be 1000. The ag of 1000 for a phase is redundant and
often not used but one must insure that the �gure of merit is zero when
no phase information is present.

REM This is an example HKL file.

HKL 0 0 6 1076.0 0.0 180.0 1.0000

HKL 0 0 18 443.0 0.0 0.0 1.0000

HKL 0 0 24 374.0 0.0 0.0 1.0000

HKL 0 0 30 1083.0 0.0 0.0 1.0000

HKL 0 0 36 254.0 0.0 180.0 1.0000

Any number of remarks can be placed at the beginning of the �le.
Each remark statement must begin with \REM " instead of \HKL ".

The reections must be sorted with l varying the most rapidly and h
varying the least rapidly. All programs that read this type of �le require
that the format spacing be exact. The TNT shell script correct will
change the hkl values of an HKL �le to move the reections to the
asymmetric unit TNT requires as well as sort the reections.

PACKED Format Structure Factor Files

PACKED coe�cient format is a dense unformatted �le structure de-
signed to minimize disk space usage. At the beginning of the �le is a
block of comments. Like a map �le each comment is 80 bytes in length
and all but the last comment begins with an asterisk (*"). A mini-
mum of one comment is required. Following the comment block is a
sequence of records each composed of two parts. The �rst part is an
integer array 100 elements long and the second part is a complex array
100 elements long. The record that is composed of these two array
contains up to (surprize!) 100 reections. The integer array contains
the indices for the coe�cient stored in the corresponding element of the
complex array. The indices are packed using the formula:

Packed Index = ((h+ 256)512 + k + 256)512 + l + 256

146 FILE FORMATS

This formula causes the restriction that no h, k, or l can fall outside
the range of -255 to 256. I have not had the good fortune to have any
problems with this limitation but virus people might.

Any element in the array of packed indices with a value of 0 should
be ignored. An element of -1 signals the end of the list of reections
and no more reads should be performed on the �le.

Ten Eyck MAP Format Files

Ten Eyck map �les are unformatted �les. They are used to store various
density maps. The �le begins with a variable number of comment
records 80 characters long. All comment records begin with an asterisk
(*") except for the last comment record.

After the comments follow one or more map sections, each composed
of two records. The �rst record of a map section contains eight integer
numbers. The �rst is the grid value for this section. The next two give
the starting and ending grid value in grid points along the fast direction,
then the next two numbers give the range in the slow direction. The
last three numbers give the sampling rate along each axis (fast �rst,
then slow, and �nally section).

The second record contains

(FAST<end> - FAST<start> + 1)*
(SLOW<end> - SLOW<start> + 1)

real numbers which is the map section. The End of File is detected
when the header record for a section contains only -1's. There will be
no records following this header record.

There is a standard convention for which axes are \fast", \slow",
and \section". When the map �le contains Z sections, X is fast and Y
is slow. For Y sections, Z is fast and X is slow. It rarely arises but when
X sections are desired Y is fast and Z is slow. In general the preference
is for Z sections. Ideally any program which reads Ten Eyck map �les
should accept any type of sectioning, but this ideal is rarely achieved.

ALWYN JONES' DSN6 MAP FORMAT FILES 147

Alwyn Jones' DSN6 Map Format Files

The DSN6 map format is designed to allow the rapid location of blocks
(called bricks in this context) of density for display on a graphics sys-
tem. The �le in binary with a fairly simple structure.

It is composed of a series of records which are all 512 bytes long. The
�rst is a header which contains all the information required to interpret
the rest of the �le. The subsequent bricks contain blocks of electron
density. Each density sample is one byte in size. The parameters for
mapping real numbers to bytes is stored in the header. The order of the
samples within a brick is \x fast, y medium, and z slow". This means
that for the �rst value of y and z all values of x are written. Then y is
incremented and all the x values for the new (y,z) pair are written.

The order of bricks within the �le is the same. For the �rst values
of y and z all the x bricks are written out in order.

The data in the header is composed of 256 integer*2 values, most
of which are never used. Those which are are

(1) x start
(2) y start
(3) z start
(4) x extent
(5) y extent
(6) z extent
(7) x sampling rate
(8) y sampling rate
(9) z sampling rate
(10) Header(18) * A Cell Edge
(11) Header(18) * B Cell Edge
(12) Header(18) * C Cell Edge
(13) Header(18) * cos�
(14) Header(18) * cos �
(15) Header(18) * cos
(16) Header(19) * (253� 3)=(�max � �min)
(17) (3�max � 253�min)=(�max � �min)
(18) Cell Constant Scaling Factor
(19) 100

148 FILE FORMATS

Any density value is really equal to the value of the byte times

Header(16)=Header(19) +Header(17):

The biggest problem with DSN6 �les is confusion about byte swap-
ping di�erences between big and little endian computers. The bytes of
the bricks present no problem but the header record does.

In the old style of DSN6 �le (Frodo days) one would write the bytes
in the bricks as though they were integer*2. This would cause them
to be swapped in the same way as the header record and allowed the
general Unix command dd, to convert the �le from one byte swap to
another.

In the new style (O days) the header record is written as though
the computer is big endian, reguardless of its true endianisity.

Appendix B

Generating REFI Geometry
Files from TNT Files

Any conversion of data from one format to another presents problems.
The severity of the problems depends upon the amount of di�erence in
the basic structure of the data itself. The reformatting a structure fac-
tor �le would seem to be simple because everyone agrees to use integral
indices and agrees that there are three of them. However even this case
is not so simple. Di�erent formats require di�erent asymmetric units,
and di�erent sorting. There are other di�erences like the di�erence
between structure factor intensities and amplitudes.

The conversion of TNT's ideal geometry data �les to those of Frodo
and O presents a particularly di�cult problem. These �le formats
embody quite di�erent views of the data required to de�ne the confor-
mation of a molecule.

Because of the fundamentally di�erent representation of the data
it is impossible to generate a REFI format �le in TNT without some
intervention on your part. It is almost certain that you will have to
add additional GEOMETRY statements to your geometry de�nition to
satisfy this program. In addition you may discover that you need to
alter some existing GEOMETRY statements.

The up side of this is that you might very well uncover errors of
ommission in you TNT geometry de�nition. TNT does not provide any

149

150 GENERATING REFI GEOMETRY FILES FROM TNT FILES

assurance that the ideal geometry de�nition you supply is complete. In
fact, it is a useful feature of TNT that you can leave out restraints
for particular geometry items if you are really unsure what their value
should be. The REFI format does not allow any of its values to be
left unde�ned. If you neglected to de�ne a particular bond angle no
program in TNT will inform you of the problem. The conversion to
REFI format will.

The Basic Problem

In TNT stereochemical restraints are simply listed. The order is unim-
portant and the completeness is unimportant. You can de�ne bond
lengths, bond angles, torsion angles, (pseudorotation angles,) planes,
and chiral centers.

The REFI format contains two types of information. One is a set
of pointers which de�ne, in a rigorous fashion, the connectivity of the
molecule. The other is a set of bond lengths, angles, and torsion angles.

The �rst di�erence you will notice is that TNT does not explicitly
de�ne the connectivity of the molecule. The format conversion routine
builds such a table from the bond length, bond angle, torsion angle,
and chiral center de�nitions. However, even TNT requires that all bond
lengths be de�ned (otherwise the bonded atoms will be pushed apart
because of a \bad" contact). You should never experience a problem
because of an unde�ned bond length.

While REFI does not require that every bond angle be de�ned it is
quite insistent that the bond angles it wants are de�ned. You will not
be able to predict which angles are required. Convert will produce an
warning message for each missing angle. You can add these angles to
you TNT geometry de�nition �le and run Convert again.

REFI has two di�erent functions and these two functions make dif-
fering uses of the torsion angles. The usual mode of REFI is to regular-
ize a model. When regularizing REFI only uses the torsion angle values
for particular angles which have been marked as \�xed". If you have
forgotten to de�ne an torsion angle, or the angle has been de�ned with

PLANES AND CHIRAL CENTERS 151

multiple correct values Convert will mark the angle as \variable". You
will still be able to regularize your molecule but these torsion angles
will not be idealized. This is only a problem for planes.

REFI uses torsion angle restraints to enforce planarity. If you have
not de�ned the torsion angles of the planar group to be single valued,
as either cis or trans, REFI will not produce a group which is at. You
will receive warning messages about each ambiguous torsion angle. You
are not required to do anything about these warnings but you will get
better results if you have fewer warnings.

The REFI format uses a \tree" data structure to represent the con-
nectivity of the molecule and every tree must have a root. TNT is
fairly arbitrary about its choice of root. If its choice is not satisfactory
you can change it by reordering the GEOMETRY statements. Place
the statements which de�ne the bond for your root �rst and TNT will
chose it as the root. I know of no reason to worry about the particular
atom at the root so you should never have a problem with this.

Planes and Chiral Centers

Another di�erence between the TNT and REFI standard geometry for-
mats is that the REFI format does not allow the de�nition of planes
and chiral centers. This ommission does not mean that you will not
have planar groups and proper chiral centers if you use REFI. These
quantities can be enforced by a judicious use of torsion angles.

Imagine a benzene ring. In TNT you would state that the six carbon
atoms are in a common plane. In REFI format you would specify that
all the torsion angles are equal to zero. Both methods get the job done.
Converting from one to the other is a problem.

If you have four atoms, which form a torsion angle, and all lie in a
plane the torsion angle might be zero degrees or it might be 180 degrees.
There is no way to tell if all you know about is the plane. The TNT
format converter will hazard a guess but will warn you that there is a
problem. The messages will be discussed later.

152 GENERATING REFI GEOMETRY FILES FROM TNT FILES

You can also de�ne chirality with torsion angles. TNT will perform
this conversion without bothering you.

Your biggest problem will be unde�ned torsion angles. The general
recommendation of the authors of TNT is to leave torsion angles unre-
strained during re�nement. Because the angles would not be used often
people simply don't de�ne them. REFI will not allow you to get away
with such laziness. You don't have to de�ne the torsion angles for every
set of four atoms { just a subset which is almost impossible to predict.
The simplest way to de�ne these angles is to attempt the conversion
and read the messages. The converted will list all the unde�ned, but
required, angles.

Most of This Belongs Somewhere Else...

but for now I am including it here.

When de�ning a standard geometry �le you must ensure that the
restraints you impose on the model are independent of each other. Usu-
ally this is simple. Bond lengths and bond angles are independent of
each other in all cases. Since these types of restraints are what people
are most concerned with they get lax.

The issue arrises when one introduces torsion angles and planes. For
example, consider the con�guration of atoms about atom CG of aspartic
acid. There are three bond angles { CB-CG-OD1, CB-CG-OD1, and
OD1-CG-OD2. In principle these angles could assume widely varying
values and can be considered uncorrelated. When you also impose the
planarity of this group you have a problem. The sum of the three angles
must equal 360 degrees. This relationship allows you to calculate one
angle if you know the other two. When restraining these atoms to a
plane you must leave one of the angle restraints out. It doesn't really
matter which one.

Similar dependences can arise with the inclusion of torsion angles
in the library.

The standard TNT library is not very good at handling this prob-
lem. In the case of aspartic acid all three bond angles and the plane are

THE MESSAGES 153

de�ned as restraints. I suppose I should �x this in the next generation
library.

Why do I bring this up in a discussion of converting a library to
REFI format? Because REFI handles the problem of overdetermination
of restraints in a very exact manner. You simply cannot write a REFI
de�nition which contains too many bond angle de�nitions because the
redundant angles have no place in the �le. The format implements this
restriction by specifying exactly which angles are proper and which are
redundant.

The problem is that the author of the library you are using may not
have had the same opinion about which angle is the redundant one.
The choice is completely arbitrary. In the aspartic acid example, your
library may not have a restraint de�ned for the angle CB-CG-OD2.
The REFI format requires this angle and will ignore your de�nition
of the OD1-CG-OD2 angle. The result is a warning that you have
failed to de�ne the CB-CG-OD2 angle. This message does not mean
that the TNT library was wrong only that di�ering and incompatible
conventions are being used.

The Messages

WARNING: Required bond angle not found between atoms CD , N , and

C in group PRO

This warning will be issued when a bond angle de�nition is missing.
You should add to your geometry de�nition the line

GEOMETRY PRO ANGLE ??? ?? C, N, CD

substituting the proper values for the angle and its standard deviation.

WARNING: Required torsion angle not found between atoms CG , CD , N

, and C in group PRO

This warning will be issued when a additional torsion angle de�ni-
tion is required. You should add

154 GENERATING REFI GEOMETRY FILES FROM TNT FILES

GEOMETRY PRO TORSION ??? ?? C, N, CD, CG

substituting the proper values for the torsion angle and its standard
deviation.

WARNING: In group HIS the torsion angle for the atoms CB , CG ,

ND1 , and CE1 is either cis or trans because all the atoms

are in the same plane. The REFI dictionary will assume they

are trans.

This warning is issued when a torsion angle must be either cis or
trans because all the atoms are in a plane. There is no way for the
program to distinguish these two possibilities but I have found that
trans is more probable. If the angle is trans you need do nothing. If
the angle is cis you must enter a GEOMETRY statement similar to

GEOMETRY PRO TORSION 1000 5 CB, CG, ND1, CE1

In this particular example the angle is properly trans and no changes
need be made.

WARNING: In group HIS the torsion angle for the atoms CG , CD2 ,

NE2 , and CE1X is either cis or trans because all the atoms

are in the same plane. The REFI dictionary will assume they

are cis because the last atom is a ring closure atom.

This warning is also produced when there is an ambiguity between
cis and trans but in this case the program guesses that cis is correct.
The di�erence is that the last atom in the list is marked (with the
appended `X') as a \ring closure" atom. If the angle really is trans you
must enter the GEOMETRY statement

GEOMETRY PRO TORSION 1180 5 CG, CD2, NE2, CE1

(Note that the `X' is left o� the name of `CE1'.) If the angle is properly
cis no changes need to be made. In this example the program's guess
is correct and no action is required.

THE MESSAGES 155

WARNING: Required torsion angle not found between atoms C4A , CHB ,

C1B , and NBX in group PRF . This angle could be defined

by either the definition of a plane covering (at least) C2B

, CHB , C1B , and NBX or a chiral center located at C1B ,

or failing that provide the value of the torsion angle.

This warning is issued when a torsion angle has not been de�ned
but the angle could have been inferred from either a plane or a chiral
center de�nition. You have to examine the structure of the group and
chose the appropriate response. In this case all of these atoms should
be in a common plane { the plane of the bacteriochlorophyll-a ring.

If neither a plane or a chiral center de�nition is appropriate for this
group of atoms you can de�ne a torsion angle. Usually, however, it is
proper in these cases to leave the angle unde�ned and allow this angle
to be classi�ed as \variable".

WARNING: Required torsion angle not found between atoms NA , MG ,

NB , and C1BX in group PRF . This angle is not the

'primary' angle at this location. To define this angle you

need to define a plane or chiral center, or as a last resort

provide the value of the torsion angle.

This angle is similar to the last except for its relationship to another
torsion angle { here NA-MG-NB-C4B. If you want to de�ne this angle
with a chiral center or plane you must also de�ne a single valued tor-
sion angle for this other group. In almost all cases this is the proper
response. If there is no chiral center or plane here then either leave this
angle as \variable" or de�ned it with a single valued torsion angle.

156 GENERATING REFI GEOMETRY FILES FROM TNT FILES

Appendix C

Reciprocal Space
Asymmetric Units

The following table lists the reciprocal space asymmetric units for all
the space groups handled by TNT. The unique portion of the data for
a space group is determined by the lattice class, the point group, and
sometimes, the orientation.

There are two levels of description. First a box is de�ned. If you
give the reections in this box you will have all the data you need, but
some reections might be redundant. The conditions listed to the right
of the box de�nition specify a more restricted collection of data, where
every reection is unique.

When a TNT program calculates structure factors it will produce
a data set �lling the full box. Some of the reections in this box will
be redundant. Any TNT program calculating a map from Fourier co-
e�cients will ignore these redundant data points. When a data set is
passed through the correct script command only the unique reections
remain. Since any re�nement calculation only uses reections that oc-
cur in both FO and FC the extra reections in FC will have no e�ect.

157

158 RECIPROCAL SPACE ASYMMETRIC UNITS

Space Asymmetric Additional
Lattice Class Group Unit Restrictions
Triclinic P1 �1 � h � 1 When h = k = 0

P�1 0 � k � 1 0 � l � 1
�1 � l � 1 When k = 0

0 � h � 1

Monoclinic-A P2 a 0 � h � 1 When k = 0
P21 a 0 � k � 1 0 � l � 1
P2/m a �1 � l � 1

Monoclinic-B P2 b 0 � h � 1 When h = 0
P21 b 0 � k � 1 0 � l � 1
P2/m b �1 � l � 1

Monoclinic-C P2 c �1 � h � 1 When k = 0
P21 c 0 � k � 1 0 � h � 1
P2/m c 0 � l � 1

Trigonal-C P3 0 � h � 1 When h = k = 0
P31 0 � k � 1 0 � l � 1
P32 �1 � l � 1 When h = 0
P3/m k = 0

Tetragonal-C P4 0 � h � 1 When h = 0
P41 0 � k � 1 k = 0
P42 0 � l � 1
P43
P4/m

159

Space Asymmetric Additional
Lattice Class Group Unit Restrictions
Hexagonal-C P6 0 � h � 1 When h = 0

P61 0 � k � 1 k = 0
P62 0 � l � 1
P63
P64
P65
P6/m

Orthorhombic-D P222 0 � h � 1
P2221 0 � k � 1
P21212 0 � l � 1
P212121
Pmmm

Trigonal-D P312 0 � h � 1 When k = 0
P3112 0 � k � h 0 � l � 1
P3212 �1 � l � 1

P321 same When h = k
P3121 0 � l � 1
P3221
P3mm

Tetragonal-D P422 0 � h � 1
P4212 0 � k � h
P4122 0 � l � 1
P41212
P4222
P42212
P4322
P43212
P4mm

160 RECIPROCAL SPACE ASYMMETRIC UNITS

Space Asymmetric Additional
Lattice Class Group Unit Restrictions
Hexagonal-D P622 0 � h � 1

P6122 0 � k � h
P6222 0 � l � 1
P6322
P6422
P6522
P6mm

Cubic-T P23 0 � h � 1 When h <> k
P213 0 � k � h 0 � l � h� 1
P2/m 3 0 � l � h

Cubic-O P432 0 � h � 1
P4132 0 � k � h
P4232 0 � l � k
P4332
P4/m 32

Appendix D

Real Space Asymmetric
Units

This table lists the real space asymmetric units for all the space groups
handled by TNT. The unique portion of the data for a space group is
determined by the lattice class, the point group, and sometimes, the
orientation.

Because the FFT algorithm cannot handle all types of symmetry
the Fourier synthesis calculations for some space groups are actually
performed in a lower symmetry group. This requires that the real
space asymmetric unit be larger by a factor of the multiplicity of the
symmetry being ignored. For example, direct three-fold axes can never
be used to speed the calculation of an FFT. Therefore space group P23
is handled as though it were space group P222. The amount of map
required is a factor of three larger that that expected for this group.

The \Additional Restrictions" column lists the additional factors
that the sampling rate must contain. No sampling rate, in any direction,
may have a prime factor larger than 17. The smaller the largest prime
factor is the more e�cient the FFT calculations will be.

161

162 REAL SPACE ASYMMETRIC UNITS

Space Asymmetric Additional
Lattice Class Group Unit Restrictions
Triclinic P1 0 � x < nx nx divisible by 2

P�1 0 � y < ny ny divisible by 2
0 � z < nz

Monoclinic-A P2 a 0 � x < nx nx divisible by 2
P21 a 0 � y < ny ny divisible by 2
P2/m a 0 � z � nz/2 nz divisible by 2

Monoclinic-B P2 b 0 � x < nx nx divisible by 2
P21 b 0 � y < ny ny divisible by 2
P2/m b 0 � z � nz/2 nz divisible by 2

Monoclinic-C P2 c 0 � x � nx/2 nx divisible by 2
P2/m c 0 � y < ny ny divisible by 2

0 � z < nz

P21 c 0 � x < nx nx divisible by 2
0 � y < ny ny divisible by 2
0 � z � nz/2 nz divisible by 2

Trigonal-C P3 0 � x < nx nx divisible by 2
P3/m 0 � y < ny ny divisible by 2

0 � z < nz

P31 0 � x < nx nx divisible by 2
P32 0 � y < ny ny divisible by 2

0 � z < nz/3 nz divisible by 3

163

Space Asymmetric Additional
Lattice Class Group Unit Restrictions
Tetragonal-C P4 0 � x � nx/2 nx divisible by 2

P4/m 0 � y < ny ny divisible by 2
0 � z < nz

P41 0 � x < nx nx divisible by 2
P43 0 � y < ny ny divisible by 2

0 � z < nz/4 nz divisible by 4

P42 0 � x � nx/2 nx divisible by 2
0 � y < ny ny divisible by 2
0 � z < nz/2 nz divisible by 2

Hexagonal-C P6 0 � x � nx/2 nx divisible by 2
P63 0 � y < ny ny divisible by 2
P6/m 0 � z < nz

P61 0 � x < nx nx divisible by 2
P65 0 � y < ny ny divisible by 2

0 � z < nz/6 nz divisible by 6

P62 0 � x � nx/2 nx divisible by 2
P64 0 � y < ny ny divisible by 2

0 � z < nz/3 nz divisible by 3

Orthorhombic-D P222 0 � x � nx/2 nx divisible by 2
P21212 0 � y < ny ny divisible by 2
Pmmm 0 � z � nz/2 nz divisible by 2

P2221 0 � x < nx nx divisible by 2
P212121 0 � y < ny ny divisible by 2

0 � z � nz/4 nz divisible by 4

164 REAL SPACE ASYMMETRIC UNITS

Space Asymmetric Additional
Lattice Class Group Unit Restrictions
Trigonal-D P312 0 � x < nx nx divisible by 2

P321 0 � y < ny ny divisible by 2
P3mmm 0 � z � nz/2 nz divisible by 2

P3112 0 � x < nx nx divisible by 2
P3121 0 � y < ny ny divisible by 2
P3212 0 � z � nz/6 nz divisible by 6
P3221

Tetragonal-D P422 0 � x � nx/2 nx divisible by 2
P4mm 0 � y < ny ny divisible by 2

0 � z � nz/2 nz divisible by 2

P4122 0 � x < nx nx divisible by 2
P41212 0 � y < ny ny divisible by 2
P4322 0 � z � nz/8 nz divisible by 8
P43212

P4222 0 � x � nx/2 nx divisible by 2
P42212 0 � y < ny ny divisible by 2

0 � z � nz/4 nz divisible by 4

Hexagonal-D P622 0 � x � nx/2 nx divisible by 2
P6322 0 � y < ny ny divisible by 2
P6mm 0 � z � nz/2 nz divisible by 2

P6122 0 � x < nx nx divisible by 2
P6522 0 � y < ny ny divisible by 2

0 � z � nz/12 nz divisible by 12

P6222 0 � x � nx/2 nx divisible by 2
P6422 0 � y < ny ny divisible by 2

0 � z � nz/6 nz divisible by 6

165

Space Asymmetric Additional
Lattice Class Group Unit Restrictions
Cubic-T P23 0 � x � nx/2 nx divisible by 2

P2/m 3 0 � y < ny ny divisible by 2
0 � z � nz/2 nz divisible by 2

P213 0 � x < nx nx divisible by 2
0 � y < ny ny divisible by 2
0 � z � nz/4 nz divisible by 4

Cubic-O P432 0 � x � nx/2 nx divisible by 2
P4/m 32 0 � y < ny ny divisible by 2

0 � z � nz/2 nz divisible by 2

P4132 0 � x < nx nx divisible by 2
P4332 0 � y < ny ny divisible by 2

0 � z � nz/8 nz divisible by 8

P4232 0 � x � nx/2 nx divisible by 2
0 � y < ny ny divisible by 2
0 � z < nz/4 nz divisible by 4

Index

Numbers

2Fo-Fc map, 68
example of creating a, 69

3Fo-2Fc map, 68

A

ACCEPT statement, 61
ADD command, 109
AGARWAL command, 64

example of, 64
Amsom, see File formats
APPLY command, 133
ASSUME statement, 22
Asymmetric units

correcting coe�cients, 117
in real space, 161
in reciprocal space, 157

ATOMx statement, 22
Averaging maps, 126

C

Calculating `calculated' map, 117
Calculating Fc's, 117
Calculating Patterson map, 117
CATEGORY statement, 104
CELL statement, 23
centric zone, 125
CHAIN statement, 23
CHANGE command, 30
CLUSTER statement, 47
Coe�cients

converting to map, 117
converting to peaks, 117

COMBINE statement, 95
Conjugate direction, see Preconditioned

conjugate gradient
Conjugate gradient, 8
CONNECT statement, 105
CONSTANT statement, 95
CONTACT Statement, 38
Control program, see Shift
Convert(program), 100
Coordinates

converting to coe�cients, 117
converting to map, 117

COPY command, 133
CRVAC statement, 88
CRVBC statement, 89
CRVC statement, 88
CURVATURE command

in Geometry, 41
in NCS, 49
in Rfactor, 65

D

DANGLING statement, 105
Diamond, see File formats
DIAMOND command, 106
Di�erence Patterson map, 68
DRVx statement, 89
Dscreen(program), 113
DSN2 command, 106

E

EXCLUDE statement, 39

166

INDEX 167

F

FC statement, 61
File formats

Amsom
producing, 110

Diamond
limitations, 102
producing, 110
reading, 106

DSN6 map
De�nition of, 147

Frodo DSN2
De�nition of, 144
limitations, 102
producing, 110
reading, 106

Frodo DSN6
producing, 68, 117

Hendrickson
limitations, 101
producing, 110
reading, 107

PDB
limitations, 101
producing, 110
reading, 108

REFI geometry
conversion to, 149

TNT ATOMx
De�nition of, 143
producing, 110

TNT HKL
De�nition of, 144
producing, 68, 117
reading, see FILE statement

TNT MAP
De�nition of, 146
producing, 68, 117
reading, see FILE statement

TNT PACKED
De�nition of, 145
producing, 68, 117
reading, see FILE statement

FILE statement, 116, 127, 139
Fixing parameters, 95
FO statement, 62
Fo-Fc map, 68

example of creating a, 69
�nding peaks in, 117

Fo-Fo map, 68
example of creating a, 71
�nding peaks in, 117

FORMFACTOR statement, 24
Fourier(program), 115
Frodo DSN2, see File formats
Frodo DSN6, see File formats
FUNCTION command

in Geometry, 42
in NCS, 50
in Rfactor, 65

FUNCVAL statement, 89

G

GATHER command, 50
gather map script, 126
Gather map(program), 126
GEOMETRY statement, 25
Geometry(program), 36

example in long loop, 41, 42
example in short loop, 42

GRADIENT command
in Geometry, 42
in NCS, 51
in Rfactor, 66

Gradient/curvature, 9
GRID statement, 25

H

Hendrickson, see File formats
HENDRICKSON command, 107

I

INCLUDE command, 30
init.cor, 15, 16

168 INDEX

J

JIGGLE command, 109

L

LATTICE statement, 25
LINK statement, 26
Long loop, 11, 13, 15, 91

M

Map
converting to coe�cients, 117
�nding peaks in, 117
ncs averaging, 126

MAXSHIFT statement, 94
Minimization method

conjugate direction, see Precon-
ditioned conjugate gradient

conjugate gradient, 8
gradient/curvature, 9
preconditioned conjugate gradient,

9
steepest descent, 7

Module
creating you own, 87
Crystallographic, 57
de�nition, 12
Noncrystallographic symmetry, 45
Phase, 74
example in long loop, 75
example in short loop, 75

Real space, 76
example in long loop, 78
example in short loop, 78

Rotation function, 78
example in long loop, 81
example in short loop, 84

Stereochemistry, 35
MOSES option, 93

N

ncs averaged map, 126
producing, 128

NCS(program), 47
example in long loop, 49, 52
example in short loop, 50

newdir.dat, 15, 16
NORMAL MATRIX command

example of, 67
in Rfactor, 67

O

olddir.dat, 15
OPERATOR statement, 26
OPTION statement, 27
OVERLAY command, 133
Overlay(program), 131

arbitrary transformation, 137
superimposing Bchl rings, 135
superimposing two chains, 135
symmetry expansion, 136

P

Patterson map
calculating, 117

PDB, see File formats
PDB command, 108
pdb2dsn2 script, 6
Peak picking, 117
Preconditioned conjugate gradient, 9
PUNCH command

general usage, 31
in Convert, 110
in Fourier, 117
in Gather map, 128
in NCS, 52
in Overlay, 134
in Rfactor, 68
in Solvent, 140

R

RENAME command, 32, 134
REPORT

FILE command, 124
GEOMETRY command, 43

INDEX 169

RFACTOR command, 69
SPACEGROUP command, 70, 125
STRUCTURE command, 43
SYMMETRY command, 43

report geo script, 3
RESIDUE statement, 27
RESOLUTION statement, 28
Rfactor(program), 58

example in long loop, 65, 66
example in short loop, 65
example of AGARWAL command,

64
example of NORMAL MATRIX

command, 67
Rigid Body Re�nement

and water, 93
Rigid body re�nement, 95
RMSTEP statement, 94

S

Scaling Fo's and Fc's, 58
restricting scale parameters, 59

SCATTER command, 53
SCREEN command

in Dscreen, 114
in Geometry, 44
in NCS, 53

script
gather map, 126
pdb2dsn2, 6
report geo, 3
tnt cycle con ncs, 3
tnt cycle ncs, 3

SELECT statement, 132
SET statement

in Rfactor, 62
in Solvent, 139

Shift(program), 15, 16, 91
example in long loop, 96
example in short loop, 97

shifted.cor, 15, 16
Short loop, 11, 14, 16, 91
SIM statement, 62
Solvent attened map

producing, 140
Solvent attening, see Solvent(program)
Solvent(program), 138

creating a attened map, 141
creating an envelope, 141

Space groups
implemented, 115

Steepest descent, 7
stp�l.dat, 15, 16
Superimposing models, see Overlay(program)

T

TARGET statement, 132
TNT ATOMx, see File formats
TNT HKL, see File formats
TNT MAP, see File formats
TNT PACKED, see File formats
tnt cycle con ncs script, 3
tnt cycle ncs script, 3
TRANSFORMATION statement, 28

V

VERBOSE option
in Fourier, 116
in Gather map, 127
in Shift, 93
in Solvent, 139

W

Wang envelope, see Solvent(program)
producing, 140

WEIGHT statement, 29
in Geometry, 40
in NCS, 48
in Rfactor, 63

Wilson B Factor, 124

